首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 468 毫秒
1.
Brier S  Lemaire D  Debonis S  Forest E  Kozielski F 《Biochemistry》2004,43(41):13072-13082
Human Eg5, a mitotic motor of the kinesin superfamily, is involved in the formation and maintenance of the mitotic spindle. The recent discovery of small molecules that inhibit HsEg5 by binding to its catalytic motor domain leading to mitotic arrest has attracted more interest in Eg5 as a potential anticancer drug target. We have used hydrogen-deuterium exchange mass spectrometry and directed mutagenesis to identify the secondary structure elements that form the binding sites of new Eg5 inhibitors, in particular for S-trityl-l-cysteine, a potent inhibitor of Eg5 activity in vitro and in cell-based assays. The binding of this inhibitor modifies the deuterium incorporation rate of eight peptides that define two areas within the motor domain: Tyr125-Glu145 and Ile202-Leu227. Replacement of the Tyr125-Glu145 region with the equivalent region in the Neurospora crassa conventional kinesin heavy chain prevents the inhibition of the Eg5 ATPase activity by S-trityl-l-cysteine. We show here that S-trityl-l-cysteine and monastrol both bind to the same region on Eg5 by induced fit in a pocket formed by helix alpha3-strand beta5 and loop L5-helix alpha2, and both inhibitors trigger similar local conformational changes within the interaction site. It is likely that S-trityl-l-cysteine and monastrol inhibit HsEg5 by a similar mechanism. The common inhibitor binding region appears to represent a "hot spot" for HsEg5 that could be exploited for further inhibitor screening.  相似文献   

2.
A simple fluorescence method is reported for the detection of colloidal aggregate formation in solution, with specific applications to determine the critical micelle concentration (CMC) of surfactants and detect small-molecule promiscuous inhibitors. The method exploits the meniscus curvature changes in high-density multiwell plates associated with colloidal changes in solution. The shape of the meniscus has a significant effect on fluorescence intensity when detected using a top-read fluorescence plate reader because of the effect of total internal reflection on fluorescence emission through a curved liquid surface. A dynamic range of 60% is calculated and observed and is measured with a relative sensitivity of 2%. Facile determination of the CMC of a variety of surfactants is demonstrated, as well as a screening assay for aggregate forming properties of small drug-like compounds, a common cause of promiscuous inhibition in high-throughput screening (HTS) enzyme inhibitor assays. Our preliminary results show a potential HTS assay with Z' factor of 0.76, with good separation between aggregating and nonaggregating small molecules. The method combines the high sensitivity and universality of classic surface tension methods with simplicity and high-throughput determination, enabling facile detection of molecular interactions involving a change in liquid or solid surface character.  相似文献   

3.
Nitric oxide synthase (NOS) inhibitors are potential drug candidates because it has been well demonstrated that excessive production of nitric oxide critically contributes to a range of diseases. Most inhibitors have been screened in vitro using recombinant enzymes, leading to the discovery of a variety of potent compounds. To make inhibition studies more physiologically relevant and bridge the gap between the in vitro assay and in vivo studies, we report here a cellular model for screening NOS inhibitors. Stable transformants were generated by overexpressing rat neuronal NOS in HEK 293T cells. The enzyme was activated by introducing calcium ions into cells, and its activity was assayed by determining the amount of nitrite that was formed in culture medium using the Griess reagent. We tested a few NOS inhibitors with this assay and found that the method is sensitive, versatile, and easy to use. The cell-based assay provides more information than in vitro assays regarding the bioavailability of NOS inhibitors, and it is suitable for high-throughput screening.  相似文献   

4.
NIMA (never in mitosis arrest)-related kinase 2 (Nek2) is a serine/threonine kinase required for centrosome splitting and bipolar spindle formation during mitosis. Currently, two in vitro kinase assays are commercially available: (i) a radioactive assay from Upstate Biotechnology and (ii) a nonradioactive fluorescence resonance energy transfer (FRET) assay from Invitrogen. However, due to several limitations such as radioactive waste management and lower sensitivity, a need for more robust nonradioactive assays would be ideal. Accordingly, we have developed four quantitative and sensitive nonradioactive Nek2 in vitro kinase assays: (i) a dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA) using peptides identified from a physiologically relevant protein substrate, (ii) DELFIA using Nek2 itself, (iii) a homogeneous time-resolved FRET assay termed LANCE, and (iv) A method of detecting phosphorylated products by HPLC. The DELFIA and LANCE assays are robust in that they generated more than 10-fold and 20-fold increases in signal-to-noise ratios, respectively, and are amenable to robotic high-throughput screening platforms. Validation of all four assays was confirmed by identifying a panel of small molecule ATP competitive inhibitors from an internal corporate library. The most potent compounds consistently demonstrated less than 100 nM activity regardless of the assay format and therefore were complementary. In summary, the Nek2 in vitro time-resolved FRET kinase assays reported are sensitive, quantitative, reproducible and amenable to high-throughput screening with improved waste management over radioactive assays.  相似文献   

5.
A high-throughput, competitive fluorescence polarization immunoassay has been developed for the detection of methyltransferase activity. The assay was designed to detect S-adenosylhomocysteine (AdoHcy), a product of all S-adenosylmethionine (AdoMet)-utilizing methyltransferase reactions. We employed commercially available anti-AdoHcy antibody and fluorescein-AdoHcy conjugate tracer to measure AdoHcy generated as a result of methyltransferase activity. AdoHcy competes with tracer in the antibody/tracer complex. The release of tracer results in a decrease in fluorescence polarization. Under optimized conditions, AdoHcy and AdoMet titrations demonstrated that the antibody had more than a 150-fold preference for binding AdoHcy relative to AdoMet. Mock methyltransferase reactions using both AdoHcy and AdoMet indicated that the assay tolerated 1 to 3 microM AdoMet. The limit of detection was approximately 5 nM (0.15 pmol) AdoHcy in the presence of 3 muM AdoMet. To validate the assay's ability to quantitate methyltransferase activity, the methyltransferase catechol-O-methyltransferase (COMT) and a known selective inhibitor of COMT activity were used in proof-of-principle experiments. A time- and enzyme concentration-dependent decrease in fluorescence polarization was observed in the COMT assay that was developed. The IC(50) value obtained using a selective COMT inhibitor was consistent with previously published data. Thus, this sensitive and homogeneous assay is amenable for screening compounds for inhibitors of methyltransferase activity.  相似文献   

6.
Kinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction. In the research presented here, 1536-well format time-resolved fluorescence resonance energy transfer (TR-FRET) and LK assays were created to identify novel Rho-associated kinase II (ROCK-II) inhibitors. HTS campaigns for both assays were conducted in this miniaturized format. It was found that both assays were able to consistently reproduce the expected pharmacology of inhibitors known to be specific to ROCK-II (fasudil IC50: 283 +/- 27 nM and 336 +/- 54 nM for TR-FRET and LK assays, respectively; Y-27632 IC50: 133 +/- 7.8 nM and 150 +/- 22 nM for TR-FRET and LK assays, respectively). In addition, both assays proved robust for HTS efforts, demonstrating excellent plate Z' values during the HTS campaign (0.84 +/- 0.03; 0.72 +/- 0.05 for LK and TR-FRET campaigns, respectively). Both formats identified scaffolds of known and novel ROCK-II inhibitors with similar sensitivity. A comparison of the performance of these 2 assay formats in an HTS campaign was enabled by the existence of a subset of 25,000 compounds found in both our institutional and the Molecular Library Screening Center Network screening files. Analysis of the HTS campaign results based on this subset of common compounds showed that both formats had comparable total hit rates, hit distributions, amount of hit clusters, and format-specific artifact. It can be concluded that both assay formats are suitable for the discovery of ROCK-II inhibitors, and the choice of assay format depends on reagents and/or screening technology available.  相似文献   

7.
In addition to kinases and G protein-coupled receptors, proteases are one of the main targets in modern drug discovery. Caspases and viral proteases, for instance, are potential targets for new drugs. To satisfy the current need for fast and sensitive high-throughput screening for inhibitors, new homogeneous protease assays are needed. We used a caspase-3 assay as a model to develop a homogeneous time-resolved fluorescence quenching assay technology. The assay utilizes a peptide labeled with both a luminescent europium chelate and a quencher. Cleavage of the peptide by caspase-3 separates the quencher from the chelate and thus recovers europium fluorescence. The sensitivity of the assay was 1 pg/microl for active caspase-3 and 200 pM for the substrate. We evaluated the assay for high-throughput usage by screening 9600 small-molecule compounds. We also evaluated this format for absorption/distribution/metabolism/excretion assays with cell lysates. Additionally, the assay was compared to a commercial fluorescence caspase-3 assay.  相似文献   

8.
Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on F?rster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.  相似文献   

9.
A range of various assays to measure chemosusceptibility of Plasmodium falciparum have been described in the literature. As the screening of a plethora of compounds for antiplasmodial activity is urgently needed and becomes a constantly increasing routine analysis, a test system has to fulfill the following requirements: sensitivity, reliability, simplicity of performance, high-throughput compatibility, and cost-effectiveness. Here, we describe an assay that fulfills all criteria and in which the fluorescent SYTOX Green dye is introduced to determine growth inhibition of Plasmodia in in vitro cultures.  相似文献   

10.
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号