首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Airway gene transfer using cationic emulsion as a mucosal gene carrier   总被引:2,自引:0,他引:2  
BACKGROUND: Delivery of genes to airway mucosa would be a very valuable method for gene therapy and vaccination. However, there have been few reports on suitable gene delivery systems for administration. In this study, we use a cationic emulsion system, which is physically stable and facilitates the transfer of genes in the presence of up to 90% serum, as a mucosal gene carrier. METHODS AND RESULTS: Cationic lipid emulsion was formulated with squalene and 1,2-dioleoyl-sn-glycero-3-trimethylammoniumpropane (DOTAP) as major components. Emulsions formed stable complexes with DNA and protected and transferred DNA to target cells against DNase I digestion in the presence of mucosal destabilizers such as heparin sulfate (a polysaccharide of the glycosaminoglycan family in mucosa) and Newfectan (a natural lung extract of bovine) in an in vitro system. In contrast, commercial liposomes and counter liposomes, made with an identical lipid composition of emulsions, failed. After in vivo intranasal instillation, the cationic emulsion showed at least 200 times better transfection activity than the liposomal carriers in both nasal tissue and lung. CONCLUSIONS: These findings show that cationic emulsions can mediate gene transfection into airway epithelium, making it a good choice for transferring therapeutic genes and for genetic vaccination against an pathogenic infection via an airway route.  相似文献   

2.
BACKGROUND: The successful application of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Such efficacy is strongly related to key parameters including serum resistance and protection of DNA. METHODS: The complexes were tested in terms of their biological activity, in the absence or presence of serum, by following transfection activity. Interaction with plasma proteins was evaluated by immunoblotting, while cytotoxicity was assessed by the Alamar Blue assay. Extent of DNA protection was determined both by using ethidium bromide intercalation and DNase I digestion assays. RESULTS: Our results show that, depending on the charge ratio and on the lipid composition, albumin and protamine can be used (either individually or co-associated) to generate cationic liposome/DNA complexes fulfilling in vivo requirements, while exhibiting high levels of transfection activity. In the present work a novel cationic lipid was tested. It was demonstrated that 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (EPOPC):cholesterol (Chol) liposomes constitute a very promising carrier for gene delivery as illustrated by their enhancing effect on transfection, as compared with DOTAP-containing liposomes. Moreover, the biological activity of EPOPC-containing complexes is significantly improved upon association of albumin, even in the presence of 60% serum (namely for the 4/1 lipid/DNA charge ratio). Nevertheless, our studies also show that transfection activity mediated by DOTAP-containing complexes can be significantly enhanced upon pre-condensation of DNA with protamine. CONCLUSIONS: Co-association of HSA and protamine to lipoplexes ensures a high degree of DNA protection and results in high levels of transfection activity even in the presence of serum.  相似文献   

3.
Gadolinium-chelating cationic lipids have been synthesized to obtain lipoplexes with MRI contrast properties. These compounds were designed to follow the biodistribution of synthetic DNA for gene delivery by nuclear magnetic resonance imaging. The lipid MCO-I-68 was synthesized, and chelate complexes with gadolinium were formed and characterized in terms of physicochemical and DNA binding properties. The transfection activity of MCO-I-68-Gd/DNA complexes was assayed in vitro on NIH 3T3. Different formulations of the product were tested. When up to 5% of the gadolinium lipid complexes were co-formulated with the cationic lipid RPR120535 used as a reference, the transfection levels were maintained as compared to RPR120535 alone. To date, only a liposomal formulation of a gadolinium-cationic lipid chelate without DNA had been observed using magnetic resonance imaging. In vivo intratumoral administration of MCO-I-68-Gd/DNA lipoplexes to tumor model led to an important increase of the NMR signal. It was demonstrated that the new complexes also acted as transfection carriers when they were formulated from liposomes.  相似文献   

4.
To improve transfection efficiency following delivery of plasmid expression vectors using lipid-based carriers, it is crucial to define structural characteristics of the lipid/DNA complexes that optimize transgene expression. Due to its strong affinity for DNA and high quantum yield, the fluorescent DNA intercalator YOYO-1 was used as a tool to assess changes in DNA that occur following lipid binding and cell delivery. In this study, the stability of the dye/DNA complex following binding of poly-L-lysine or monocationic lipids is characterized. More than 98% of the fluorescence measured for a defined DNA/YOYO-1 complex was lost when DNA was condensed using poly-L-lysine. This loss in fluorescence could be attributed to displacement of bound dye. In contrast, more than 30% of the fluorescence of the dye-labeled DNA was retained after formation of cationic lipid/DNA complexes. Significantly, the results illustrate differences in structural changes cationic lipids and PLL exert on plasmid DNA. The fluorescent lipid/DNA complex was used to assess DNA delivery to murine B16/BL6 cells in vitro. An assay relying on fluorescence resonance energy transfer between bound YOYO-1 and propidium iodide was used to distinguish between DNA attached to the cell surface and internalized DNA.  相似文献   

5.
Homopolymeric dAn.dTn sequences, where n is 4 or greater, have special properties leading to increased duplex stability and DNA bending. The lacUV5 promoter was used to examine the functional consequences of changing the -10 TATAAT consensus sequence to the sequence TAAAAT. The transversion mutation at the underlined site was accomplished with site-directed mutagenesis using translation termination as the selection procedure. For free DNA, structural differences at the 5' and 3' junction regions of the dA4.dT4 tract can be readily detected by DNase I digestion. However, site binding by Escherichia coli RNA polymerase appeared unaltered by the TAAAAT sequence since identical DNase I footprints were obtained for the lacUV5 and mutant promoters. Binding competition studies under different ionic strengths revealed a significant reduction in mutant promoter open complex formation relative to the lacUV5 promoter. Mutant promoter open complexes also dissociated faster and to a greater extent than the corresponding lacUV5 promoter open complexes when challenged with heparin or a combination of heparin and increased KCl concentration. Consequently, mutant promoter open complexes appear less stable than lacUV5 promoter open complexes.  相似文献   

6.
The application of conventional cationic liposomes/DNA complexes in gene transfer was hampered due to their large size, instability, and limited transfection site in vivo. In this report, we described a dialysis-based method and produced small, stable, and negatively charged DNA-containing liposomes composed of low content of cationic lipid and high content of fusogenic lipid. The liposomes were relatively spherical with a condensed core inside, and exhibited small size with narrow particle size distribution. The encapsulation efficiency of the liposomes was 42.53 +/- 2.29%. They were stable and showed enough protective ability to plasmid DNA from degradation after incubation with different amounts of DNase. Twenty-fold higher transfection efficiency for the liposomes was achieved when compared with that of naked plasmid DNA and no toxicities to hepatocellular carcinoma cells were observed. Our results indicate that the negatively charged DNA-containing liposomes can facilitate gene transfer in cultured cells, and may alleviate the drawbacks of the conventional cationic liposomes/DNA complexes for gene delivery in vivo.  相似文献   

7.
HPhA, a recombinant histone-like protein from Pyrococcus horikoshii OT3 strain, has compacting activity with DNA as previously reported. The extreme stability and DNA packaging activity of the HPhA make it a candidate as a DNA carrier. Here, the plasmid DNA-HPhA complexes were fully characterized by gel retardation assay and DNase resistance assay. It was further proved that HPhA has in vitro DNA transfection activity. HPhA-mediated transfection efficiency was dependent on the mass ratio of HPhA to DNA, the incubation time and the presence of calcium. A protocol for HPhA-mediated transfection in vitro was established to improve transfection efficiency. The optimal mass ratio of HPhA to DNA was 6:1, and the incubation time required for the DNA-HPhA complex to be in contact with the cell was 4 h. In addition, the presence of 2 mM CaCl2 in the cell culture medium was required for efficient transfection. Serum did not show inhibition of HPhA-mediated transfection. Most importantly, the cytotoxicity of HPhA is lower than that of commonly used cationic liposome-based gene delivery systems, and HPhA-mediated transfection in NIH 3T3, HEK 293, HL-7702, HepG2 and Cos 7 cell lines in vitro has a higher efficiency and reproducibility. These results demonstrate that the HPhA is a new, potentially widely applicable and highly efficient gene carrier.  相似文献   

8.
Cationic lipid emulsion systems consisting of 1,2-dioleoyl-sn-glycero-3-trimethyl-ammonium-propane (DOTAP) and plasmid DNA with various counterions in the lipid headgroups were prepared. The transfection activity of the cationic lipid emulsion systems was then investigatedin vitro andin vivo. The complex formation of plasmid DNA and lipid emulsion was affected by the counterions through charged headgroup repulsion and also by the salt concentration in the media. As such, the transfection activity of the DOTAP emulsion system can be controlled by changing the counterions.  相似文献   

9.
In a previous study, we developed a novel cationic lipid consisting of polyamidoamine dendron of third generation and two dodecyl chains, designated as DL-G3, which in combination with a fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) achieves efficient transfection of CV1 cells by synergetic action of the proton sponge effect and membrane fusion. This study examines the effect of serum on the transfection activity of the DL-G3-DOPE-plasmid DNA lipoplexes. The transfection activity of a lipoplex with a composition optimized in the absence of serum decreased markedly in the presence of serum. However, the lipoplexes that induce efficient transfection in the presence of serum were obtainable by controlling the charge ratio of the primary amine of the DL-G3 to the phosphate group (N/P ratio) and DOPE content. The complex, which exhibited the highest transfection activity in the presence of serum, has a lower N/P ratio and higher DOPE content than that optimized in the absence of serum. Whereas disintegration of these complexes was induced by addition of heparin, which is a polysaccharide with negatively charged groups, the complex that retained transfection activity in the presence of serum required more negative charges of heparin for complex disintegration. That result implies its higher stability against negatively charged serum proteins. Comparison of the serum-resistant complex with some commercially available transfection reagents, such as Lipofectamine and SuperFect, indicates that the DL-G3 complex achieved more efficient transfection of these cells in the presence of serum.  相似文献   

10.

Background

Cationic lipid DNA complexes based on DOTAP (1,2-dioleoyl-3-(trimethyammonium) propane) and mixtures of DOTAP and cholesterol (DC) have been previously optimized for transfection efficiency in the absence of serum and used as a non-viral gene delivery system. To determine whether DOTAP and DC lipid DNA complexes could be obtained with increased transfection effciency in the presence of high serum concentrations, the composition of the complexes was varied systematically and a total of 162 different complexes were analyzed for transfection efficiency in the presence and absence of high serum concentrations.

Results

Increasing the ratio of DOTAP or DC to DNA led to a dose dependent enhancement of transfection efficiency in the presence of high serum concentrations up to a ratio of approximately 128 nmol lipid/μg DNA. Transfection efficiency could be further increased for all ratios of DOTAP and DC to DNA by addition of the DNA condensing agent protamine sulfate (PS). For DOTAP DNA complexes with ratios of ≤ 32 nmol/μg DNA, peak transfection efficiencies were obtained with 4 μg PS/μg DNA. In contrast, increasing the amount of PS of DC complexes above 0.5 μg PS /μg DNA did not lead to significant further increases in transfection efficiency in the presence of high serum concentrations. Four complexes, which had a similar high transfection efficiency in cell culture in the presence of low serum concentrations but which differed largely in the lipid to DNA ratio and the amount of PS were selected for further analysis. Intravenous injection of the selected complexes led to 22-fold differences in transduction efficiency, which correlated with transfection efficiency in the presence of high serum concentrations. The complex with the highest transfection efficiency in vivo consisted of 64 nmol DC/ 16 μg PS/ μg DNA. Physical analysis revealed a predicted size of 440 nm and the highest zeta potential of the complexes analyzed.

Conclusions

Optimization of cationic lipid DNA complexes for transfection efficiency in the presence of high concentrations of serum led to the identification of a DC complex with high transduction efficiency in mice. This complex differs from previously described ones by higher lipid to DNA and PS to DNA ratios. The stability of this complex in the presence of high concentrations of serum and its high transduction efficiency in mice suggests that it is a promising candidate vehicle for in vivo gene delivery.  相似文献   

11.
A scalable and safe method was developed to prepare liposomal carriers for entrapment and delivery of genetic material. The carrier systems were composed of endogenously occurring dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP), cholesterol (CHOL) and glycerol (3%, v/v). Liposomes were prepared by a modified and improved version of the heating method in which no harmful chemical or procedure is involved. Anionic lipoplexes were formed by incorporating plasmid DNA (pCMV-GFP) to the liposomes by the mediation of calcium ions. Transfection efficiency and toxicity of the lipoplexes were evaluated in CHO-K1 cells using flow cytometry and MTT assay, respectively. Controls included DNA-Ca(2+) complexes (without lipids), anionic liposome-DNA complexes (with no Ca(2+)), and a commercially available cationic liposomal formulation. Results indicated fast and reproducible formation of non-toxic lipoplexes that possess long-term stability, high DNA entrapment capacity (81%) and high transfection efficiency. The lipoplex preparation method has the potential of large-scale manufacture of safe and efficient carriers of nucleic acid drugs.  相似文献   

12.
A novel series of cationic amphiphiles based on dialkyl glutamides with cationic pyridinium head group were synthesized as potential gene delivery agents. Four cationic lipids with glutamide as linker and varying chain lengths were tested for their transfection efficiency in three cell lines. The DNA-lipid complexes were characterized for their ability to bind to DNA, protection from nuclease digestion, size, zeta-potential, and toxicity. All four lipids demonstrated efficient transfection in MCF-7, COS, and HeLa cells, and the reporter gene expression was much higher with DOPE as the helper lipid in the formulation when compared to cholesterol. Among these 14-carbon lipids, lipid 2 has shown the highest transfection efficiency, complete protection of DNA from nuclease digestion, and low toxicity. Interestingly, lipid 2 has also shown remarkable enhancement in transfection in the presence of serum.  相似文献   

13.
Cationic polymers, such as poly-l-lysine (pLL) and polyethyleneimine (pEI), are receiving growing attention as vectors for gene therapy. They form polyelectrolyte complexes with DNA, resulting in a reduced size of the DNA and an enhanced stability toward nucleases. The major disadvantages of using both polymers for in vivo purposes are their cytotoxicity and, in the case of pEI, the fact that it's not biodegradable. In this work, we investigated the interaction between a series of cationic, glutamic acid based polymers and red blood cells. The MTT test was used to investigate the cytotoxicity of the complexes. The ability of the polymers to stabilize DNA toward nucleases was investigated. Transfection studies were carried out on Cos-1 cells. The results from the haemolysis studies, the haemagglutination studies, and the MTT assay show that the polymers are substantially less toxic than pLL and pEI. The polymers are able to protect the DNA from digestion by DNase I. The transfection studies show that the polymer-DNA complexes are capable of transfecting cells, most of them with poor efficiency compared to pEI-DNA complexes.  相似文献   

14.
Since the first reported transfection studies using cationic liposomes in 1987, significant advances have been made on the understanding of the physical properties of DNA/cationic liposome complexes (lipoplexes) in order to improve their transfection efficiencies. In this review a critical survey of the biophysical techniques used in their characterization is presented, with an emphasis on fluorescence methodologies, namely FRET. It is shown that the use of FRET combined with state-of-the-art modeling and data analysis allows detailed structural information in conditions close to the in vivo utilization of these non-viral based vectors. We describe in detail the use of fluorescence-based methods in (i) the assessment of DNA-lipid interaction and kinetics of lipoplex formation; (ii) membrane mixing studies; (iii) characterization of lipoplex molecular structure through the determination of interlamellar distances; and (iv) qualitative and quantitative evaluation of DNA condensation by cationic liposomes. This review aims at providing a framework for future characterization studies of novel liposomal formulations as gene delivery carriers, taking advantage of more sensitive nucleic acid and lipid dyes concomitantly with increasingly sophisticated fluorescence techniques.  相似文献   

15.
Kumar VV  Chaudhuri A 《FEBS letters》2004,571(1-3):205-211
Herein, employing a previously reported disulfide-linker strategy, we have designed and synthesized a novel cationic lipid 2 with a disulfide-linker and its non-disulfide control analog lipid 1. The relative efficacies of lipids 1 and 2 in transfecting CHO, COS-1 and MCF-7 cells were measured using both reporter gene and whole cell histochemical staining assays. In stark contrast to the expectation based on the disulfide-linker strategy, the control non-disulfide cationic lipid 1 showed phenomenally superior in vitro transfection efficacies to its essentially transfection incompetent disulfide counterpart lipid 2. Results in DNase I protection experiments and the electrophoretic gel patterns in the presence of glutathione, taken together, are consistent with the notion that the success of the disulfide-linker strategy may depend more critically on the DNase I sensitivity of the lipoplexes than on the efficient DNA release induced by intracellular glutathione pool.  相似文献   

16.
The successful application of gene therapy depends highly on understanding the properties of gene carriers and their correlation with the ability to mediate transfection. An important parameter that has been described to improve transfection mediated by cationic liposomes involves association of ligands to cationic liposome–DNA complexes (lipoplexes). In this study, ternary complexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane:cholesterol, plasmid DNA and transferrin (Tf, selected as a paradigm of a ligand) were prepared under various conditions, namely, in medium with different ionic strengths (HEPES-buffered saline [HBS] or dextrose), at different lipid/DNA (+/–) charge ratios and using different modes for component addition. We investigated the effect of these formulation parameters on transfection (in the absence and presence of serum), size of the complexes, degree of DNA protection and extent of their association with cells (in terms of both lipid and DNA). Our results show that all the tested parameters influenced to some extent the size of the complexes and their capacity to protect the carried genetic material, as well as the levels of cell association and transfection. The best transfection profile was observed for ternary complexes (Tf-complexes) prepared in high ionic strength solution (HBS), at charge ratios close to neutrality and according to the following order of component addition: cationic liposomes–Tf–DNA. Interestingly, in contrast to what was found for dextrose–Tf-complexes, transfection mediated by HBS-Tf-complexes in the presence of serum was highly enhanced.  相似文献   

17.
SA脂质体介导DNA转染细胞的进一步研究   总被引:3,自引:0,他引:3  
SA脂质体可高效介导DNA转染CV-1细胞,本文进步研究表明,SA脂质体还可介导DNA高效瞬时和稳定地转染CHO和COS细胞。SA脂质体和DNA形成复合物可保护DAN不被核酸内切酶和DNaseI降解。荧光标记和细胞松驰素B抑制实验分别表明,SA脂质体易被细胞吸附,主要通过内吞传送DNA进入细胞,而Lipofectin主要通过融合传送DNA进细胞。  相似文献   

18.
Poly(ethylene glycol)-lipid (PEG-lipid) conjugates are widely used in the field of liposomal drug delivery to provide a polymer coat that can confer favorable pharmacokinetic characteristics on particles in the circulation. More recently these lipids have been employed as an essential component in the self-assembly of cationic and neutral lipids with polynucleic acids to form small, stable lipid/DNA complexes that exhibit long circulation times in vivo and accumulate at sites of disease. However, the presence of a steric barrier lipid might be expected to inhibit the transfection activity of lipid/DNA complexes by reducing particle-membrane contact. In this study we examine what effect varying the size of the hydrophobic anchor and hydrophilic head group of PEG-lipids has on both gene and antisense delivery into cells in culture. Lipid/DNA complexes were made using unilamellar vesicles composed of 5 mole% PEG-lipids in combination with equimolar dioleoylphosphatidylethanolamine and the cationic lipid dioleyldimethylammonium chloride. Using HeLa and HepG2 cells we show that under the conditions employed PEG-lipids had a minimal effect on the binding and subsequent endocytosis of lipid/DNA complexes but they severely inhibited active gene transfer and the endosomal release of antisense oligodeoxynucleotides into the cytoplasm. Decreasing the size of the hydrophobic anchor or the size of the grafted hydrophilic PEG moiety enhanced DNA transfer by the complexes.  相似文献   

19.
Toll-like receptors as adjuvant receptors   总被引:5,自引:0,他引:5  
Poly(ethylene glycol)-lipid (PEG-lipid) conjugates are widely used in the field of liposomal drug delivery to provide a polymer coat that can confer favorable pharmacokinetic characteristics on particles in the circulation. More recently these lipids have been employed as an essential component in the self-assembly of cationic and neutral lipids with polynucleic acids to form small, stable lipid/DNA complexes that exhibit long circulation times in vivo and accumulate at sites of disease. However, the presence of a steric barrier lipid might be expected to inhibit the transfection activity of lipid/DNA complexes by reducing particle-membrane contact. In this study we examine what effect varying the size of the hydrophobic anchor and hydrophilic head group of PEG-lipids has on both gene and antisense delivery into cells in culture. Lipid/DNA complexes were made using unilamellar vesicles composed of 5 mole% PEG-lipids in combination with equimolar dioleoylphosphatidylethanolamine and the cationic lipid dioleyldimethylammonium chloride. Using HeLa and HepG2 cells we show that under the conditions employed PEG-lipids had a minimal effect on the binding and subsequent endocytosis of lipid/DNA complexes but they severely inhibited active gene transfer and the endosomal release of antisense oligodeoxynucleotides into the cytoplasm. Decreasing the size of the hydrophobic anchor or the size of the grafted hydrophilic PEG moiety enhanced DNA transfer by the complexes.  相似文献   

20.
In the procedure for cationic liposome-mediated transfection, the cationic lipid is usually mixed with a "helper lipid" to increase its transfection potency. The importance of helper lipids, including dioleoylphosphatidylcholine (DOPC) and phosphatidylethanolamine (dioleoyl PE), DO was examined. Freeze-fracture electron microscopy of DNA:cationic complexes containing the pSV-beta-GAL plasmid DNA, the cationic lipid dioleoyl trimethylammonium propane, and these helper lipids showed that the most efficient mixtures were aggregates of ensheathed DNA and fused liposomes. PE-containing complexes aggregated rapidly when added to culture media containing polyanions, whereas PC-containing complexes did not. However, more granules of PC-containing complexes were formed on cell surfaces after the complexes were added to Chinese hamster ovary (CHO) cells in transfection media. Pronase treatment inhibited transfection, whereas dilute poly-L-lysine enhanced transfection, indicating that the attachment of DNA:liposome complexes to cell surfaces was mediated by electrostatic interaction. Fluorescence spectroscopy studies confirmed that more PC-containing complexes than PE-containing complexes were associated with CHO cells, and that more PC-containing complexes were located in a low pH environment (likely to be within endosomes) with time. Cytochalasin-B had a stronger inhibitory effect on PC-containing liposome-mediated than on PE-containing liposome-mediated transfection. Confocal microscopic recording of the fluorescently label lipid and DNA uptake process indicated that many granules of DNA:cationic liposome complexes were internalized as a whole, whereas some DNA aggregates were left out on the cell surfaces after liposomes of the complexes fused with the plasma membranes. For CHO cells, endocytosis seems to be the main uptake pathway of DNA:cationic liposome complexes. More PC-containing granules than PE-containing granules were formed on cell surfaces by cytoskeleton-directed membrane motion, after their respective DNA:liposome complexes attached to cell surfaces by electrostatic means. Formation of granules on the cell surface facilitated and/or triggered endocytosis. Fusion between cationic liposomes and the cell membrane played a secondary role in determining transfection efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号