首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
植物MAPK级联途径参与调控ABA信号转导   总被引:3,自引:0,他引:3  
促分裂原活化蛋白激酶(MAPK)级联途径信号通路在真核生物细胞信号的转换和放大过程中起重要作用。MAPK级联途径由三个成员组成,分别是MAPK、MAPKK及MAPKKK,此三个信号组分按照MAPKKK-MAPKK-MAPK的方式依次磷酸化将外源信号级联放大向下传递。大量研究表明,植物MAPK级联途径参与调控脱落酸(ABA)信号转导。因此,该文就ABA和MAPK的生物学功能、ABA信号转导中的磷酸化与去磷酸化以及MAPK级联途径与ABA信号转导之间的关系等方面的研究进展进行综述,以便进一步认识MAPK和ABA信号转导的分子机制。  相似文献   

2.
促分裂原活化蛋白激酶(MAPK)级联途径是真核生物中高度保守的信号通路。MAPK级联途径由MAPKs、MAPKKs和MAPKKKs组成,通过MAPKKK→MAPKK→MAPK的逐级磷酸化传递细胞信号。AtMEKK1是拟南芥MAPKKK家族中的一员,是目前研究较为详细的MAPKKK。本文就AtMEKK1的结构特征、生理功能、信号转导中的"交谈"及其复杂性进行综述,旨在探讨植物MAPKKK的信号转导作用。  相似文献   

3.
植物对盐胁迫响应的信号转导途径   总被引:3,自引:0,他引:3  
植物通过调控复杂的信号网络来应对盐胁迫。近年来,随着植物基因工程技术的发展,对植物在盐胁迫下信号转导系统的研究取得了一定进展。本文以拟南芥为代表,对盐胁迫下参与调控植物耐盐生理响应的两大类主要信号转导途径——Ca2+依赖型信号转导通路和丝裂原活化蛋白激酶(MAPK)级联反应途径的研究进展进行综述,主要介绍参与各信号转导通路的组件及诱发的耐盐生理响应等方面,并对该研究领域存在的问题及今后可能的研究方向进行展望。  相似文献   

4.
MAPK级联途径参与ABA信号转导调节的植物生长发育过程   总被引:2,自引:0,他引:2  
植物激素ABA参与调控植物生长发育和生理代谢以及多种胁迫应答过程,促分裂原活化蛋白激酶(MAPK)级联途径应答于多种生物和非生物胁迫,广泛参与调控植物的生长发育。MAPK级联途径与ABA信号转导协同作用参与调控植物种子萌发、气孔运动和生长发育,本文主要归纳了植物中受ABA调控激活的MAPK级联途径成员,阐述了它们参与ABA信号转导调控植物生理反应和生长发育的过程,并对MAPK级联途径与ABA信号转导的研究方向作出了展望,指出对MAPK下游底物的筛选是完善MAPK级联途径的重要组成部分。  相似文献   

5.
 脑缺氧缺血后,神经元和星形胶质细胞中调节细胞存活与死亡的信号转导通路被激活,主要包括:MAPK信号转导通路,PI3-K/Akt信号转导通路,JAK-STAT信号转导通路和转录因子NF- κB参与的信号转导通路等.在缺氧缺血的神经元和星形胶质细胞中,同一信号转导通路的激活表现出不同的时程变化,作用也不尽相同,这可能是这两种细胞对抗缺氧缺血损伤能力差异的基础.深入分析比较信号转导通路的细节差异,将为我们理解损伤/保护机理,寻求保护神经细胞的策略提供实验依据  相似文献   

6.
促分裂原活化蛋白激酶(MAPK)信号级联通路是真核生物中高度保守的重要信号系统, 通过激酶逐级磷酸化传递并放大上游信号, 进而调控细胞反应。MAPK信号通路不仅介导植物响应环境变化, 而且在调节植物生长发育过程中发挥重要作用。近期, 山东大学丁兆军课题组研究发现, 植物重要激素生长素能够通过激活MPK14调控下游ERF13的磷酸化, 进而影响超长链脂肪酸的合成并调控侧根发育。该研究从全新的角度解析了侧根起始的新机制, 并进一步证实生长素和古老的信号转导模块MAPKs相偶联的分子机制。侧根作为植物响应环境最重要的器官之一, MAPK信号通路在侧根发育过程中的功能解析可为阐明植物如何整合发育和环境信号提供新思路。  相似文献   

7.
MAPK信号转导通路参与了人巨细胞病毒的致病过程。MAPK通路中的ERK和p38通路在人巨细胞病毒复制周期中起重要作用,通过磷酸化转录因子引起病毒及宿主相关基因的转录,从而调控人巨细胞病毒的复制;人巨细胞病毒的包膜糖蛋白及其他多种基因表达产物可通过不同机制以一定时序激活MAPK通路,调节自身及宿主细胞相应基因表达,以利于病毒完成其生活周期,并参与病毒的致病过程。深入研究MAPK信号转导通路与人巨细胞病毒感染的关系可为治疗该病毒感染引起的疾病提供新的治疗靶点。  相似文献   

8.
MAPK信号通路与脂肪细胞分化   总被引:1,自引:0,他引:1  
周华  蔡国平 《生命的化学》2006,26(6):505-507
促分裂原活化的蛋白激酶(MAPK)通路是真核细胞重要的信号转导通路,主要有ERK、p38和JNK三条途径,参与调控多种细胞应答和生理病理过程。该文重点讨论了MAPK对脂肪细胞分化的调控。其中ERK对脂肪细胞分化的调节具有多样性,随分化进程不同表现为不同的调控功能,p38和JNK也通过不同的机制对脂肪细胞分化发挥相异的调节作用。MAPK信号转导与脂肪分化的紧密联系,使其可能成为调控与脂分化密切相关的代谢疾病如肥胖、糖尿病等的一条关键通路。  相似文献   

9.
寄主植物与昆虫在长期协同进化中形成了复杂的防御和反防御机制。本文系统综述了寄主植物与刺吸式昆虫互作防御的过程与机制。刺吸式昆虫利用特化的口针,吸食寄主植物组织汁液时,植物通过细胞膜表面或细胞内受体感知昆虫取食信号,并经过丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路、植物激素信号通路、钙离子信号通路、转录因子调控、Rop/Rac GTPase信号通路、活性氧(reactive oxygen species, ROS)通路等信号转导通路激活植物免疫。为了阻止害虫进一步取食,寄主植物形成了增强的物理屏障,并诱导产生次生代谢物、抗营养酶类、抗消化酶类和胼胝质沉积及释放挥发物等多种防御机制。在与寄主植物“博弈”的过程中,刺吸式昆虫往往会利用其取食时分泌的唾液成分,靶向植物靶标蛋白,通过破坏宿主植物的物理屏障,或抑制宿主植物的抗性信号转导,或抑制宿主次生代谢物的毒害作用,或通过跨界RNA和水平基因转移等方式抑制植物的防御反应,从而达到继续取食为害的目的。此外,基于植物与病原菌互作模式,结合寄主植物与刺吸式昆虫互作研究进展,总结了寄主植物...  相似文献   

10.
丝裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPKs)是广泛表达的丝氨酸/酪氨酸激酶,在哺乳动物细胞多种信号转导通路中起重要作用,MAPKs有3个主要家族:ERKs,JNKs和p38MAPKs.p38信号通路是MAPK通路的一重要分支,在心肌缺血再灌注的损伤中起很重要的作用,p38MAPK信号通路与心肌缺血再灌注机制都有或多或少的联系,本文就以p38MAPK在这一病理过程的研究进展做一综述.  相似文献   

11.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

12.
真核生物的MAPK级联信号传递途径   总被引:15,自引:0,他引:15  
MAPK级联途径在真核生物细胞的信号传递过程中起着重要的作用.MAPK级联途径由MAPK、MAPKK和MAPKKK三类酶蛋白组成.这三类蛋白质的结构非常保守,通过磷酸化作用传递各种信号.在酵母和动、植物细胞中已经发现了一系列的MAPK级联途径成员,使真核生物的信号传递途径逐渐得到阐明.  相似文献   

13.
Mitogen-activated protein kinases (MAPKs) are activated through cascades or modules consisting of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Investigating the molecular basis of activation of the c-Jun N-terminal kinase (JNK) subgroup of MAPK by the MAPKKK MEKK2, we found that strong and specific JNK1 activation by MEKK2 was mediated by the MAPKK JNK kinase 2 (JNKK2) rather than by JNKK1 through formation of a tripartite complex consisting of MEKK2, JNKK2, and JNK1. No scaffold protein was required for the MEKK2-JNKK2-JNK1 tripartite-complex formation. Expression of JNK1, JNKK2, and MEKK2 significantly augmented the coprecipitation of, respectively, MEKK2-JNKK2, MEKK2-JNK1, and JNKK2-JNK1, indicating that the interaction of MEKK2, JNKK2, and JNK1 is synergistic. Finally, the JNK1 was activated more efficiently in the MEKK2-JNKK2-JNK1 complex than was the JNK1 excluded from the complex. Thus, formation of a signaling complex through synergistic interaction of a MAPKKK, a MAPKK, and a MAPK molecule like MEKK2-JNKK2-JNK1 is likely to be responsible for the efficient, specific flow of information via MAPK cascades.  相似文献   

14.
M Takekawa  T Maeda    H Saito 《The EMBO journal》1998,17(16):4744-4752
MAPK (mitogen-activated protein kinase) cascades are common eukaryotic signaling modules that consist of a MAPK, a MAPK kinase (MAPKK) and a MAPKK kinase (MAPKKK). Because phosphorylation is essential for the activation of both MAPKKs and MAPKs, protein phosphatases are likely to be important regulators of signaling through MAPK cascades. To identify protein phosphatases that negatively regulate the stress-responsive p38 and JNK MAPK cascades, we screened human cDNA libraries for genes that down-regulated the yeast HOG1 MAPK pathway, which shares similarities with the p38 and JNK pathways, using a hyperactivating yeast mutant. In this screen, the human protein phosphatase type 2Calpha (PP2Calpha) was found to negatively regulate the HOG1 pathway in yeast. Moreover, when expressed in mammalian cells, PP2Calpha inhibited the activation of the p38 and JNK cascades induced by environmental stresses. Both in vivo and in vitro observations indicated that PP2Calpha dephosphorylated and inactivated MAPKKs (MKK6 and SEK1) and a MAPK (p38) in the stress-responsive MAPK cascades. Furthermore, a direct interaction of PP2Calpha and p38 was demonstrated by a co-immunoprecipitation assay. This interaction was observed only when cells were stimulated with stresses or when a catalytically inactive PP2Calpha mutant was used, suggesting that only the phosphorylated form of p38 interacts with PP2Calpha.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in plants. Linking upstream MAPK kinase kinase (MAPKKK) to downstream MAPK, MAPK kinase (MAPKK) plays a crucial role in MAPK cascade. MAPKK6 is one member of the MAPKK family. In this study, we have found that plant MAPKK6 genes are widely distributed in different plant species, including moss, seedless vascular plants, gymnosperms, and angiosperms. However, no MAPKK6 can be found in genomes of algae. Analysis of exon–intron organization and intron phase showed that plant MAPKK6s are highly conserved genes during plant evolution. In Physcomitrella patens, Selaginella moellendorffii, and Picea glauca, MAPKK6s exist as multicopy genes. In most high plants, however, MAPKK6s exist as single-copy. Phylogenetic analysis indicated that the occurrence of single-copy of MAPKK6s in high plants is likely because of genomic copy-number loss.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules composed of three sequentially activated kinases (MAPKKK, MAPKK and MAPK). Because individual cells contain multiple MAPK cascades, mechanisms are required to ensure the fidelity of signal transmission. In yeast, external high osmolarity activates the HOG (high osmolarity glycerol) MAPK pathway, which consists of two upstream branches (SHO1 and SLN1) and common downstream elements including the Pbs2 MAPKK and the Hog1 MAPK. The Ssk2/Ssk22 MAPKKKs in the SLN1 branch, when activated, exclusively phosphorylate the Pbs2 MAPKK. We found that this was due to an Ssk2/Ssk22-specific docking site in the Pbs2 N-terminal region. The Pbs2 docking site constitutively bound the Ssk2/Ssk22 kinase domain. Docking site mutations drastically reduced the Pbs2-Ssk2/Ssk22 interaction and hampered Hog1 activation by the SLN1 branch. Fusion of the Pbs2 docking site to a different MAPKK, Ste7, allowed phosphorylation of Ste7 by Ssk2/Ssk22. Thus, the docking site contributes to both the efficiency and specificity of signaling. During these analyses, we also found a nuclear export signal and a possible nuclear localization signal in Pbs2.  相似文献   

17.
The major components of the mitogen-activated protein kinase (MAPK) cascades are MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Recent rapid progress in identifying members of MAPK cascades suggests that a number of such signaling pathways exist in cells. To date, however, how the specificity and efficiency of the MAPK cascades is maintained is poorly understood. Here, we have identified a novel mouse protein, termed Jun N-terminal protein kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1), by a yeast two-hybrid screen, using JNK3 MAPK as the bait. Of the mammalian MAPKs tested (JNK1, JNK2, JNK3, ERK2, and p38alpha), JSAP1 preferentially coprecipitated with the JNKs in cotransfected COS-7 cells. JNK3 showed a higher binding affinity for JSAP1, compared with JNK1 and JNK2. In similar cotransfection studies, JSAP1 also interacted with SEK1 MAPKK and MEKK1 MAPKKK, which are involved in the JNK cascades. The regions of JSAP1 that bound JNK, SEK1, and MEKK1 were distinct from one another. JNK and MEKK1 also bound JSAP1 in vitro, suggesting that these interactions are direct. In contrast, only the activated form of SEK1 associated with JSAP1 in cotransfected COS-7 cells. The unstimulated SEK1 bound to MEKK1; thus, SEK1 might indirectly associate with JSAP1 through MEKK1. Although JSAP1 coprecipitated with MEK1 MAPKK and Raf-1 MAPKKK, and not MKK6 or MKK7 MAPKK, in cotransfected COS-7 cells, MEK1 and Raf-1 do not interfere with the binding of SEK1 and MEKK1 to JSAP1, respectively. Overexpression of full-length JSAP1 in COS-7 cells led to a considerable enhancement of JNK3 activation, and modest enhancement of JNK1 and JNK2 activation, by the MEKK1-SEK1 pathway. Deletion of the JNK- or MEKK1-binding regions resulted in a significant reduction in the enhancement of the JNK3 activation in COS-7 cells. These results suggest that JSAP1 functions as a scaffold protein in the JNK3 cascade. We also discuss a scaffolding role for JSAP1 in the JNK1 and JNK2 cascades.  相似文献   

18.
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK–MAPKK–MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK–MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.  相似文献   

19.
The mitogen-activated protein kinase (MAPK) cascades, including c-Jun N-terminal kinase (JNK), are composed of a MAPK, MAPK kinase (MAPKK), and MAPKK kinase (MAPKKK). Previously, we reported that JNK-binding protein 1 (JNKBP1) enhances JNK activation induced by the TGF-β-activated kinase1 (TAK1) MAPKKK in transfected cells. We have investigated whether JNKBP1 functions as an adaptor protein for nuclear factor (NF)-κB activation mediated by TAK1 in COS-7 cells. Co-expression experiments showed that JNKBP1 interacted with not only TAK1, but also with its upstream regulators, TNF-receptor associated factors 2 and 6 (TRAF2 and TRAF6). An endogenous interaction between JNKBP1 and TRAF2 or TAK1 was confirmed by immunoprecipitation analysis. We also found that JNKBP1 could enhance the NF-κB activation induced by TAK1 and TRAF2, and could promote TRAF2 polyubiquitination. These results suggest a scaffolding role for JNKBP1 in the TRAF2-TAK1-NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号