首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pattern formation along the anterior-posterior axis of the vertebrate limb is established upon activation of Sonic Hedgehog (SHH) in the zone of polarizing activity (ZPA). Since many mouse mutants with preaxial polydactyly show ectopic expression of Shh at the anterior margin of the limb buds, it has been thought to be a primary defect caused by these mutations. We show here that the mouse mutation luxate (lx) exhibits dose-dependent reduction in the size of the Fgf8 expression domain in the ectoderm from the initial stage of limb development. This aberration was independent of Fgf10 expression in the limb mesenchyme. Shh was induced in the mesenchyme underlying the posterior end of the Fgf8 expression domain, indicating an anterior shift of Shh expression in lx hindlimb buds. Prior to the ectopic induction of Shh, the expression domains of genes downstream from Shh, namely dHAND, Gli1, Ptc and Gre, which are normally expressed in posterior mesenchyme of limb buds, expanded anteriorly on the lx hindlimb buds. Conversely, the expression domains of anterior mesenchymal markers such as Gli3and Alx4 decreased in size. Thus, ectopic Shh is not a primary defect of the lx mutation. Rather, our results indicate that the lx mutation affects the positioning of the anteroposterior border in developing hindlimb buds.  相似文献   

2.
We have analyzed a new limb mutant in the chicken that we name oligozeugodactyly (ozd). The limbs of this mutant have a longitudinal postaxial defect, lacking the posterior element in the zeugopod (ulna/fibula) and all digits except digit 1 in the leg. Classical recombination experiments show that the limb mesoderm is the defective tissue layer in ozd limb buds. Molecular analysis revealed that the ozd limbs develop in the absence of Shh expression, while all other organs express Shh and develop normally. Neither Ptc1 nor Gli1 are detectable in mutant limb buds. However, Bmp2 and dHAND are expressed in the posterior wing and leg bud mesoderm, although at lower levels than in normal embryos. Activation of Hoxd11-13 occurs normally in ozd limbs but progressively declines with time. Phase III of expression is more affected than phase II, and expression is more severely affected in the more 5' genes. Interestingly, re-expression of Hoxd13 occurs at late stages in the distal mesoderm of ozd leg buds, correlating with formation of digit 1. Fgf8 and Fgf4 expression are initiated normally in the mutant AER but their expression is progressively downregulated in the anterior AER. Recombinant Shh protein or ZPA grafts restore normal pattern to ozd limbs; however, retinoic acid fails to induce Shh in ozd limb mesoderm. We conclude that Shh function is required for limb development distal to the elbow/knee joints, similar to the Shh(-/-) mouse. Accordingly we classify the limb skeletal elements as Shh dependent or independent, with the ulna/fibula and digits other than digit 1 in the leg being Shh dependent. Finally we propose that the ozd mutation is most likely a defect in a regulatory element that controls limb-specific expression of Shh.  相似文献   

3.
4.
5.
The secreted protein encoded by the Sonic hedgehog (Shh) gene is localized to the posterior margin of vertebrate limb buds and is thought to be a key signal in establishing anterior-posterior limb polarity. In the Shh(-/-) mutant mouse, the development of many embryonic structures, including the limb, is severely compromised. In this study, we report the analysis of Shh(-/-) mutant limbs in detail. Each mutant embryo has four limbs with recognizable humerus/femur bones that have anterior-posterior polarity. Distal to the elbow/knee joints, skeletal elements representing the zeugopod form but lack identifiable anterior-posterior polarity. Therefore, Shh specifically becomes necessary for normal limb development at or just distal to the stylopod/zeugopod junction (elbow/knee joints) during mouse limb development. The forelimb autopod is represented by a single distal cartilage element, while the hindlimb autopod is invariably composed of a single digit with well-formed interphalangeal joints and a dorsal nail bed at the terminal phalanx. Analysis of GDF5 and Hoxd11-13 expression in the hindlimb autopod suggests that the forming digit has a digit-one identity. This finding is corroborated by the formation of only two phalangeal elements which are unique to digit one on the foot. The apical ectodermal ridge (AER) is induced in the Shh(-/-) mutant buds with relatively normal morphology. We report that the architecture of the Shh(-/-) AER is gradually disrupted over developmental time in parallel with a reduction of Fgf8 expression in the ridge. Concomitantly, abnormal cell death in the Shh(-/-) limb bud occurs in the anterior mesenchyme of both fore- and hindlimb. It is notable that the AER changes and mesodermal cell death occur earlier in the Shh(-/-) forelimb than the hindlimb bud. This provides an explanation for the hindlimb-specific competence to form autopodial structures in the mutant. Finally, unlike the wild-type mouse limb bud, the Shh(-/-) mutant posterior limb bud mesoderm does not cause digit duplications when grafted to the anterior border of chick limb buds, and therefore lacks polarizing activity. We propose that a prepattern exists in the limb field for the three axes of the emerging limb bud as well as specific limb skeletal elements. According to this model, the limb bud signaling centers, including the zone of polarizing activity (ZPA) acting through Shh, are required to elaborate upon the axial information provided by the native limb field prepattern.  相似文献   

6.
7.
Between days 9.5 and 10, the forelimb buds of developing murine embryos progress from stage 1 which are just beginning to express shh and whose posterior mesoderm has only weak polarizing activity to stage 2 limbs with a distinguishable shh expression domain and full polarizing activity. We find that exposure on day 9.5 to teratogens that induce the loss of posterior skeletal elements disrupts the polarizing activity of the stage 2 postaxial mesoderm and polarizing activity is not subsequently restored. The ontogeny of expression of the mesodermal markers shh, ptc, bmp2, and hoxd-12 and 13, as well as the ectodermal markers wnt7a, fgf4, fgf8, cx43, and p21 occurred normally in day 9.5 teratogen-exposed limb buds. At stage 3, the treated limb apical ectodermal ridge usually possessed no detectable abnormalities, but with continued outgrowth postaxial deficiencies became evident. Recombining control, stage matched limb bud ectoderm with treated mesoderm prior to ZPA grafting restored the duplicating activity of treated ZPA tissue. We conclude that in addition to shh an early ectoderm-dependent signal is required for the establishment of the mouse ZPA and that this factor is dependent on the posterior ectoderm.  相似文献   

8.
9.
When a mouse zone of polarizing activity (ZPA) at the posterior margin of the limb bud was grafted into the anterior margin of the chick limb bud, the expressions of the chick homeobox genes HoxD12 and D13 were induced prior to the formation of chick extra digits. This induction was observed in a restricted domain close to both the grafted mouse ZPA and the chick apical ectodermal ridge (AER). When the posterior half of the AER was removed, the normal expression was diminished in the distaloposterior region. Thus, it is likely that at least two distinct factors, one from the ZPA and the other from the AER, act cooperatively to provide positional information to induce the sequential expression of the HoxD genes.  相似文献   

10.
11.
12.
Homeoproteins have been shown to be expressed in a position-specific manner along the anterior-posterior axis in the developing chick feather bud, as seen also in the developing limb bud. These facts raise the possibility that there may be common mechanistic features in the establishment of the anterior-posterior polarity between both organs. In order to investigate this possibility, feather bud tissues were transplanted into the anterior region of limb buds to determine whether feather bud tissues possess properties such as the zone of polarizing activity of the limb bud. The manipulated limb bud formed a mirror image duplication of the skeletal elements, mainly (2)2234 digit pattern or sometimes 3(2)234. Both the anterior and posterior halves of feather bud tissue exhibited almost equal activity in inducing ectopic skeletal elements. Hox d-12 and Hox a-13 were expressed coordinately around the transplanted site of the operated limb bud. This secondary axis-inducing activity of the feather bud was enhanced when grafts were pretreated with trypsin. In contrast, the presumptive feather bud tissue and inter-feather bud tissue did not induce a secondary axis of the limb bud. These results suggest that the feather bud contains a region that exerts polarizing activity and that this region may play key roles in the formation of the anterior-posterior and, if it exists, proximal-distal axis of the feather bud, possibly via the regulation of region specific expression of Hox genes.  相似文献   

13.
Patterning of the limb is coordinated by the complex interplay of three signaling regions: the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the non-ridge limb ectoderm. Complex feedback loops exist between Shh in the ZPA, Bmps and their antagonists in the adjacent mesenchyme, Wnt7a in the dorsal ectoderm and Fgfs in the AER. In contrast to the previously reported complete absence of digits in Shh(-/-) mice, we show that one morphologically distinct digit, with a well-delineated nail and phalanges, forms in Shh(-/-) hindlimbs, while intermediate structures are severely truncated and fused. The presence of distal autopod elements is consistent with weak expression of Hoxd13 in Shh(-/-) hindlimbs. Shh(-/-) forelimbs in contrast have one distal cartilage element, a less-well differentiated nail and fused intermediate bones. Interestingly, Ihh is expressed at the tip of Shh mutant limbs and could account for formation of distal structures. In contrast to previous studies we also demonstrate that Shh signaling is required for maintenance of normal Fgf8 expression, since expression of Fgf8, unlike some other AER marker genes, is rapidly lost from anterior to posterior after E10.5, with only a small domain of Fgf8 expression remaining posteriorly. Furthermore, loss of expanded Fgf8 expression is paralleled by a collapse of the handplate. Our data show that development of most intermediate elements of the hindlimb skeleton are Shh-dependent, and that Shh signaling is required for anterior-posterior expansion of the AER in both limbs and for the subsequent branching of zeugopod and autopod elements. Finally, we show that Shh is also required for outgrowth of the limb ectoderm and thus for the formation of a distinct limb compartment.  相似文献   

14.
We have identified chick frizzled (Fz)-10, encoding a Wnt receptor, and examined the expression pattern during embryogenesis. Fz-10 is expressed in the region posterior to the Hensen's node at stage 6. Fz-10 expression is detected in the dorsal domain of the neural tube and the central nervous system of the developing embryo. In the developing limb, Fz-10 expression starts at stage 18 in the posterior-dorsal region of the distal mesenchyme, and gradually expands to the anterior-distal region. Fz-10 is also expressed in the feather bud and branchial arch. Implantation of Sonic hedgehog (Shh)-expressing cells into the anterior margin of the limb bud resulted in the induction of Fz-10 expression in anterior-dorsal mesenchyme.  相似文献   

15.
16.
17.
Ahn S  Joyner AL 《Cell》2004,118(4):505-516
In the vertebrate limb, the posteriorly located zone of polarizing activity (ZPA) regulates digit identity through the morphogen Sonic Hedgehog (Shh). By genetically marking Shh-responding cells in mice, we have addressed whether the cumulative influence of positive Shh signaling over time and space reflects a linear gradient of Shh responsiveness and whether Shh could play additional roles in limb patterning. Our results show that all posterior limb mesenchyme cells, as well as the ectoderm, respond to Shh from the ZPA and become the bone, muscle, and skin of the posterior limb. Further, the readout of Shh activator function integrated over time and space does not display a stable and linear gradient along the A-P axis, as in a classical morphogen view. Finally, by fate mapping Shh-responding cells in Gli2 and Gli3 mutant limbs, we demonstrate that a specific level of positive Hh signaling is not required to specify digit identities.  相似文献   

18.
19.
Vertebrate limb development occurs along three cardinal axes-proximodistal, anteroposterior and dorsoventral-that are established via the organization of signaling centers, such as the zone of polarizing activity (ZPA). Distal limb development, in turn, requires a molecular feedback loop between the ZPA expression of sonic hedgehog (Shh) and the apical ectodermal ridge. The TALE homeoprotein Pbx1 has been shown to be essential for proximal limb development. In this study, we first uncover that Pbx1 and Pbx2 are co-expressed in the lateral plate and early limb field mesoderm. Later, Pbx2 is expressed throughout the limb, unlike Pbx1, which is expressed only in the proximal bud. By exploiting a Pbx1/Pbx2 loss-of-function mouse model, we demonstrate that, despite the lack of limb abnormalities in Pbx2-deficient (Pbx2(-/-)) embryos, compound Pbx1(-/-); Pbx2(+/-) mutants, in addition to their exacerbated proximal limb defects, exhibit novel and severe distal abnormalities. Additionally, we reveal that Pbx1(-/-); Pbx2(-/-) embryos lack limbs altogether. Furthermore, we establish that, unlike in flies, where the leg develops independently of Hox and where the Pbx ortholog Exd is required for specification of proximal (but not distal) limbs, in vertebrates, distal limb patterning is Pbx1/Pbx2 dependent. Indeed, we demonstrate that Pbx genetic requirement is mediated, at least in part, through their hierarchical control of Hox spatial distribution and Shh expression. Overall, we establish that, by controlling the spatial expression of Hox genes in the posterior limb and regulating ZPA function, Pbx1/Pbx2 exert a primary hierarchical function on Hox genes, rather than behaving merely as Hox ancillary factors.  相似文献   

20.
Mammal-fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号