首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
《Journal of Asia》2023,26(1):102025
Mosquitoes bite human beings and transmit many diseases, such as malaria, dengue fever, and Zika virus. Vector control of mosquitoes is an effective strategy for reducing the spread of disease. However, extensive use of insecticides (e.g. pyrethroids and organophosphorus) has caused resistance in mosquitoes, which weakens the effectiveness of mosquito control. Phytochemicals have been considered an alternative approach to mosquito control. Essential oil (EO) was obtained from the leaves and flowers of Origanum vulgare, and its synergistic activity with piperonyl butoxide (PBO) was tested against Aedes albopictus and Culex pipiens quinquefasciatus larvae. Thirty-seven compounds were identified, among which carvacrol and thymol were two major constituents (30.73 % and 18.81 %, respectively). O. vulgare EO had a significant toxic effect against fourth-stage larvae of Cx. p. quinquefasciatus and Ae. albopictus, with LC50 values of 17.51 and 75.90 mg/L. Carvacrol and thymol also each appeared to be more effective against Cx. p. quinquefasciatus (LC50 = 19.30 and 11.56 mg/L, respectively) than Ae. albopictus (LC50 = 26.62 and 26.66 mg/L, respectively). PBO interacted synergistically with O. vulgare EO, carvacrol and thymol with 2.60–6.26 times as much of the active compound needed without PBO as against Cx. p. quinquefasciatus and Ae. albopictus larvae. Overall, our results contribute to the development of new natural mosquito insecticides.  相似文献   

2.
Botanical pesticides play increasingly important roles in the control of agricultural pests. In this study, the insecticidal effects, specifically the repellent action and contact toxicity, of the essential oil extracted from Chinese chive (EOC) against Plutella xylostella larvae were confirmed. The mechanisms of repellent’s action were studied using electroantennograms (EAGs), and the effects on glutathione S‐transferase (GST), carboxylesterase (CarE), and acetyl cholinesterase were investigated after EOC treatments. The EOC affected the EAG results and inhibited the activities of GST and CarE in treated P. xylostella larvae, which could explain its insecticidal effects. And, four pyrazines showed greater repellent activities than that of the EOC, which was confirmed as the main active compounds of EOC.  相似文献   

3.
Trypsin Modulating Oostatic Factor (TMOF) is a decapeptide hormone that inhibits the biosynthesis of digestive enzymes in the mosquito midgut. The hormone inhibits food digestion and ultimately leads to starvation and death. It has been used as a biological insecticide to control mosquitoes. In an attempt to increase the insecticidal activity of TMOF, a combination of CryIC (δ‐endotoxin from Bacillus thuringiensis) and TMOF was determined. Eight recombinant proteins fused with GST (glutathione‐S‐transferase) were expressed in Escherichia coli cells. Their insecticidal activities were determined against Culex pipiens and Spodoptera littoralis larvae. Purified GST‐TMOF and its analogue GST‐YDPAS exhibited a moderate toxicity on C. pipiens larvae with LC50 of 145.9 and 339.9 μg/mL, respectively. Unexpectedly, no mortality was observed in first instar larvae of S. littoralis. Puirified GST‐TMOF and GST‐YDPAS together with Bt toxin showed a synergistic toxic effect on both Culex and Spodoptera larvae. In the presence of 100 μg/mL GST‐TMOF and GST‐YDPAS, the median lethal concentration of entomocidus on culex larvae decreased from 52.1 to 16.7 and 31.9 μg/mL, respectively. Likewise, GST‐TMOF and GST‐YDPAS incorporated with 0.07 μg/cm2 of enotmocidus showed insecticidal activity against S. littoralis with LC50 of 16.4 and 21.9 μg/cm2. The E. coli lysates containing GST‐CryIC and its 3′‐truncated version showed low toxicity against the lepidopteran insect (10.8 and 16.6 μg/cm2) compared to 0.15 μg/cm2 of the native crystalline form of CryIC. Similarly, the mosquitocidal activity of the recombinant Bt toxins was low.  相似文献   

4.
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.  相似文献   

5.
The joint action and sublethal effects of methoxyfenozide and lufenuron were measured against Spodoptera exigua. Methoxyfenozide and lufenuron exhibited optimum synergistic toxicity on S. exigua at a mass ratio of 4:6, and the co-toxicity coefficient (CTC) was 165.705. Third instars larvae of S. exigua were treated with methoxyfenozide (LC15 = 21.004 ng/cm2), lufenuron (LC15 = 27.134 ng/cm2), or a mixture of methoxyfenozide and lufenuron (MML, LC15 = 16.503 ng/cm2) through feeding for 72 h. Ingestion of MML by larvae significantly inhibited larval and pupal weights and pupation rate, and prolonged the larval and pupal development of S. exigua compared to individual treatment ofmethoxyfenozide or lufenuron. Both methoxyfenozide and MML treatments significantly decreased the fertility of female S. exigua. No significant changes were observed in case of adult emergence and egg hatching for different treatments. The MML-treated S. exigua exhibited significantly lower activities of polyphenol oxidase (PPO) and cytochrome P450 (CYP450) than those in S. exigua treated separately with methoxyfenozide or lufenuron. Finally, methoxyfenozide, lufenuron, and MML treatments decreased chitinase, acetylcholinesterase (AChE), carboxylesterase (CarE), and glutathione-s-transferase (GST) activities in S. exigua.  相似文献   

6.
【目的】小菜蛾Plutella xylostella(L.)是全球十字花科植物上最重要的害虫。氰虫酰胺作为一种新型的邻甲酰胺基苯甲酰胺类杀虫剂有着独特的作用方式,而关于氰虫酰胺对小菜蛾的影响的报道几乎没有。【方法】本研究采用叶片药膜法研究室内条件下氰虫酰胺对小菜蛾生理生化的影响,饲喂小菜蛾含有氰虫酰胺药液(0, LC20和LC50)的甘蓝叶片48 h后,观察小菜蛾的生物学特性及其相关酶活性的变化。【结果】氰虫酰胺对小菜蛾3龄幼虫的LC20和LC50分别为0.03和0.08 mg/L。使用LC20和LC50浓度的氰虫酰胺处理小菜蛾3龄幼虫48 h后,对其影响表现为显著降低小菜蛾的蛹重、化蛹率和羽化率;明显延长4龄幼虫期和蛹期。采用这两个浓度氰虫酰胺处理小菜蛾48 h,其保护酶(CAT和POD)活性在处理24 h内持续升高并且高于对照组;随后,活性继续升高但是与对照组没有差异(CAT: P=0.58; POD: P=0.13)。而其解毒酶(CarE, GST和ODM)活性在处理12 h内与对照组没有差异(CarE: P=0.43; GST: P=0.54; ODM: P=0.25),但是随着取食时间的延长,其活性明显高于对照组。【结论】LC20和LC50浓度氰虫酰胺能够显著抑制小菜蛾的生长发育,对降低害虫虫口密度有一定的作用。同时这两个浓度氰虫酰胺还能够诱导小菜蛾体内解毒酶活性的升高,这将为田间合理施药,延缓害虫抗药性的产生提供理论依据。  相似文献   

7.
棉铃虫核型多角体病毒(HaNPV)分别与三氟氯氰菊酯、溴氰菊酯、氰戊菊酯、灭净菊酯、灭多威、辛硫磷、甲基对硫磷和乙酰甲胺磷等化学杀虫剂混合饲喂棉铃虫幼虫,统计致死中浓度LC50,计算增效比,测定虫体内与抗性有关的三种重要酶:多功能氧化酶(MFO)、羧酸酯酶(CarE)、乙酰胆碱酯酶(AChE)的活性。研究大豆卵磷脂对HaNPV致病性的影响。结果表明:HaNPV与化学杀虫剂混合饲喂抗性棉铃虫,生测统计增效比均大于1.0,特别是病毒与甲基对硫磷混用,增效比更是达到3.53,表现出良好的增效作用。混剂感染抗性棉铃虫,虫体内MFO的活性比化学杀虫剂单用时降低3~12倍,CarE和AChE的活性也比化学杀虫剂单用时低,HaNPV明显抑制了化学杀虫剂对MFO和CarE的诱导作用。HaNPV与大豆卵磷脂混用,提高了HaNPV对棉铃虫的感染致死率,缩短了致死中时间(LT50)。  相似文献   

8.
为研究植物挥发性有机化合物α-萜品醇的杀虫活性及作用机理, 本研究采用熏蒸法测定了α-萜品醇对大麦虫Zophobas morio(鞘翅目: 拟步行甲科)4龄幼虫的急性毒性, 并测定了不同熏蒸时间后幼虫体内超氧化物歧化酶(SOD)、 过氧化物酶(POD)和过氧化氢酶(CAT)活性。结果表明: 熏蒸48 h时, α-萜品醇对大麦虫4龄幼虫的LC50和LC20值分别为69.425 μg/L和59.916 μg/L。α-萜品醇(LC20和LC50)处理的4龄幼虫SOD, POD和CAT活性均表现为先升高后降低的趋势。据此推测, α-萜品醇在幼虫体内积累显著影响幼虫体内SOD, POD和CAT活性, 降低虫体内自由基的清除能力, 从而对其产生毒害作用。  相似文献   

9.
为明确噻虫胺对桃蚜Myzus persicae (Sulzer)的毒力和桃蚜的代谢解毒机制, 本研究采用点滴法、 叶片浸渍法和叶柄内吸法分别测定了噻虫胺对桃蚜的毒力, 以及胡椒基丁醚(PBO)、 磷酸三苯酯(TPP)和顺丁烯二酸二乙酯(DEM)对噻虫胺毒力的影响; 检测了噻虫胺在亚致死剂量LC6, LC15和LC30下对桃蚜体内乙酰胆碱酯酶、 羧酸酯酶和谷胱甘肽-S-转移酶活力的影响。结果表明: 噻虫胺对桃蚜点滴、 浸渍和内吸LC50分别为1.891, 2.341和1.303 mg/L; 3种酶抑制剂分别与噻虫胺按1∶1混用, PBO对噻虫胺增效达2.41倍, 增效作用显著; TPP对噻虫胺增效达1.52倍, 增效作用也较明显; DEM对噻虫胺无增效作用。以噻虫胺LC30浓度处理桃蚜, 处理后24 h其体内乙酰胆碱酯酶比活力受到显著抑制, 抑制率达41.2%; 以LC15和LC30浓度的噻虫胺处理桃蚜, 处理后24 h其体内羧酸酯酶比活力分别是对照的1.29和1.36倍, 有显著诱导激活作用; 以噻虫胺LC6, LC15和LC30浓度处理的桃蚜, 对其体内谷胱甘肽-S-转移酶的抑制率分别达7.9%, 11.9%和22.7%。结果说明噻虫胺对桃蚜具有较高毒力, 羧酸酯酶和多功能氧化酶可能是桃蚜体内代谢噻虫胺的主要酶系。  相似文献   

10.
【目的】阐明大气CO2浓度升高对外来入侵昆虫西花蓟马Frankliniella occidentalis及其本地近缘种花蓟马F. intonsa的影响机制。【方法】测定和分析了CO2人工气候箱内不同CO2浓度(400 μL/L和800 μL/L)下饲养3代的这两种蓟马体内3种解毒酶[羧酸酯酶(CarE)、乙酰胆碱酯酶(AchE)和微粒体多功能氧化酶(MFO)]和3种保护酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)]的活性。【结果】西花蓟马成虫体内的CarE, AchE, MFO, CAT和POD酶活性随着CO2浓度的升高而显著上升(P<0.05),其中800 μL/L CO2浓度下CarE和MFO酶活性分别比400 μL/L CO2浓度下增加了24.78%和16.05%;800 μL/L CO2浓度下花蓟马成虫体内的CarE, MFO和CAT酶活性显著高于400 μL/L CO2浓度下花蓟马成虫体内的相应酶活性,而AchE和POD酶活性在两种CO2浓度间差异不显著(P>0.05)。800 μL/L CO2浓度下西花蓟马和花蓟马成虫体内的SOD酶活性均显著低于400 μL/L CO2浓度下的相应蓟马酶活性(P<0.05),分别下降了65.22%和42.20%。【结论】CO2浓度升高是导致两种蓟马成虫体内CarE,MFO和SOD酶活性上升的主要原因,而AchE, CAT和POD酶活性的变化主要受蓟马种类的影响。两种蓟马可能通过改变体内解毒酶或保护酶的活性来适应高浓度CO2的环境。  相似文献   

11.
【目的】为了研究乙基多杀菌素对草地贪夜蛾Spodoptera frugiperda幼虫的毒力及作用机制。【方法】以氯虫苯甲酰胺为对照,采用表面涂抹法测定了乙基多杀菌素对草地贪夜蛾2, 3和4龄幼虫的LC_(50)和LC_(90)。采用酶联免疫吸附法(ELISA),测定不同浓度乙基多杀菌素(0.127, 0.183, 0.250, 0.400和0.572 mg/L)处理48 h后草地贪夜蛾3龄幼虫体内多功能氧化酶(MFO)、谷胱甘肽-S-转移酶(GST)、羧酸酯酶(CarE)以及乙酰胆碱酯酶(AchE)的活性。【结果】与氯虫苯甲酰胺相比,乙基多杀菌素对草地贪夜蛾幼虫具有更高的毒力,处理48 h后对2, 3和4龄幼虫的LC_(50)值分别为0.21, 0.34和0.59 mg/L, LC_(90)值分别为0.59, 0.75和2.01 mg/L。经过乙基多杀菌素处理后,草地贪夜蛾3龄幼虫体内MFO和AchE活性均表现随着浓度的增加而显著增加,二者均在0.572 mg/L处理时活性最高,分别为52.23和23.98 U/mg pro; CarE活性在低浓度乙基多杀菌素处理(0.127和0.183 mg/L)下相对于溶剂对照(0.1%Tween-80)无显著变化,随着浓度增加至0.400与0.572 mg/L时,其活性显著增加; GST活性表现为随着乙基多杀菌素浓度增加而增加的特点,当处理浓度为0.400与0.572 mg/L时,其活性无显著性差异。【结论】乙基多杀菌素对草地贪夜蛾幼虫的杀虫效果优于氯虫苯甲酰胺,尤其对4龄幼虫效果最为明显;在不同浓度的乙基多杀菌素处理条件下,草地贪夜蛾幼虫体内的CarE, MFO和AchE活性有所增高。  相似文献   

12.
Four oils from Piper nigrum, Litsea cubeba, Zanthoxylum bungeanum and Curcuma longa were obtained by ethanol extraction. The repellency of these oils and two major compounds (linalool and piperine) was evaluated against female adult and third‐instar nymphs of the rice pest, Nephotettix cincticeps, under laboratory and glasshouse conditions. Paired‐choice and no‐choice assays were used for each treatment, with essential oils evaluated after 24 and 48 hr of exposure and chemical compounds evaluated after 12 and 24 hr of exposure. The potential effects of essential oils on activities of glutathione S tranferase (GST), carboxyl esterase (CarE) and acetyl cholinesterase (AchE) were also evaluated after 48 hr of exposure to leafhoppers. The constituents of the essential oils were determined using GC‐MS. The results showed that the major components in the oils were piperine (34.75%) for P. nigrum, 9,12‐octadecadienoic acid (Z,Z) (18.74%) for L. cubeba, ethanone, 1‐(2‐hydroxy‐4,6‐dimethoxyphenyl) (18.51%) for Z. bungeanum and turmerone (15.89%) for C. longa. In all cases, the essential oils repelled female adults and third‐instar nymphs of N. cincticeps. The repellency of the tested oils and chemicals compounds in the paired‐choice assay was higher than in the no‐choice assay. In all experimental conditions, P. nigrum and C. longa oils were the most and the least potent, respectively. Linalool was the best repellent among the single‐tested compounds under laboratory conditions. In the glasshouse study, the highest repellency was observed in the mixture of linalool and piperine. GST and CarE activities of leafhoppers were significantly enhanced by exposure to the four essentials oils; AchE activity increased significantly only in the P. nigrum and L. cubeba assays. Our results clearly indicate that the tested oils and chemical compounds are promising agents for developing plant‐based pesticides to control N. cincticeps.  相似文献   

13.
【目的】本研究旨在明确茚虫威亚致死浓度对茚虫威敏感性降低的棉铃虫Helicoverpa armigera生物学参数及解毒酶活性的影响,以科学有效防治这一害虫,避免其对茚虫威的抗性快速发展。【方法】采用浸叶法测定了茚虫威对棉铃虫茚虫威抗性汰选种群(TP)及其同源对照种群(CP)3龄幼虫的毒力;用两性生命表分析LC20浓度茚虫威对TP种群当代(F0)生命表参数的影响,并测定了LC20浓度茚虫威处理48 h后CP和TP种群棉铃虫3龄幼虫体内解毒酶[多功能氧化酶(MFO)、羧酸酯酶(CarE)和谷胱甘肽-S-转移酶(GST)]及乙酰胆碱酯酶(AChE)的活性。【结果】茚虫威对棉铃虫CP种群和TP种群3龄幼虫的LC20分别为2.27和9.91 mg/L。LC20茚虫威处理TP种群后,48 h的生长量、化蛹率、羽化率和成虫畸形率均显著低于未用药对照,而特定年龄生命期望值exj高于未用药对照;TP种群棉铃虫3龄幼虫体内GST和MFO活性与CP种群相比显著升高,CarE活性显著降低。【结论】本研究结果表明棉铃虫TP种群在LC20浓度茚虫威胁迫下存在明显的生长与繁殖不利性,同时对其也产生了适应能力。LC20浓度茚虫威处理后,棉铃虫TP种群的GST和MFO活性被显著诱导,说明这两种酶可能与棉铃虫对茚虫威产生抗药性密切相关;而CarE活性被显著抑制,说明该酶可能参与了茚虫威转化成N-脱甲氧羰基代谢物(DCJW)的活化过程。  相似文献   

14.
Two plant essential oils; camphor and castor were tested for insecticidal and antifeedant activity against the 4th instar larvae of Spodoptera littoralis, a serious pest on cotton in Egypt. Also the impact of LC10 of both oils on some physiological parameters in larvae was studied by using leaf dipping technique. Analysis of both oils using GC–MS revealed several insecticidal and antifeedant compounds. Our results showed higher insecticidal activity and antifeedant index of camphor oil against S. littoralis. The LC50 and the antifeedant indices were 163.1, 246.8?mg/ml and 12.69, 6.62% for camphor and castor bean oil, respectively. The total hemocyte count (THC) and differential hemocyte count (DHC) were reduced significantly after 48?h of treatment compared to controls. Both oils reduced all types of hemocytes except plasmatocytes which were reduced only by castor oil. Camphor oil decreased total proteins and carbohydrates while castor oil targeted only carbohydrate content. Both oils didn't affect the amount of total lipids. Lipase, α-amylase and glucose-6-phosphate dehydrogenase (G6PD) enzyme activities were increased significantly in larvae treated with camphor oil than other treatments. These results clearly indicate that castor and camphor oils can affect the nutritional status in S. littoralis larvae, thereby changing the internal metabolic processes in the larvae which make them as potential control agents in IPM programs against S. littoralis.  相似文献   

15.
《Journal of Asia》2014,17(2):123-127
In order to establish a physiological link between antioxidases and the resistance level of insects to cadmium (Cd), natural populations of Boettcherisca peregrina (Diptera: Sarcophagidae) were maintained for 20 generations and reared either on an uncontaminated diet or on a diet contaminated with cadmium (Cd) at a concentration equivalent to the median lethal concentration (LC50) as determined every five generations. A relatively susceptible strain (S) and a Cd-resistant strain (R) were selected. The metal accumulation, growth and development, reproduction, and antioxidant enzyme activities in these strains were analyzed. The results showed that R-strain organisms had enhanced juvenile survivorship, increased Cd accumulation, and increased adult female fecundity when compared with S-strain. The larval enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) in R-strain larvae were higher than those in S-strain larvae when fed diets with or without Cd. This indicates that Cd resistance in B. peregrina larvae is mediated by SOD, CAT, GR, and GST.  相似文献   

16.
《Journal of Asia》2021,24(4):1235-1238
Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae), is a worldwide omnivorous pest. It is the primary insect pest in many economically important stored crops. The insecticidal activity of essential oils (EOs) extracted from Ajania potaninii and Ajania fruticulosa were evaluated against Plodia interpunctella. EOs obtained by hydro-distillation were analyzed by GC–MS. Fumigant toxicity testing indicated that both EOs and their main components were toxic to P. interpunctella adults. 1,8-Cineole exhibited the strongest activity, having an LC50 of 0.86 mg/L air and being twice as active as camphor. Myrtenol was also strongly toxic to P. interpunctella adults (LC50 0.99 mg/L air), while camphor, verbenol, borneol, and the two complete EOs exhibited lower toxicity. None of the EOs or main components exhibited significant toxicity against the larvae of P. interpunctella. This study provides evidence of the individual active substances accounting for the insecticidal activity of EOs from A. potaninii and A. fruticulosa. These EOs have potential as biological insecticides for controlling insect pest damage in stored crops.  相似文献   

17.
Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) is a predator insect with potential applications in biological control because both nymphs and adults have been shown to prey on other insect pests by injection of toxic salivary gland contents. This study identified non-proteinaceous compounds with insecticidal activity from the saliva of P. nigrispinus in Anticarsia gemmatalis. In particular, the ether extract from P. nigrispinus saliva led to mortality in A. gemmatalis larvae, with a LC50 = 2.04 μL and LC90 = 3.27 μL. N,N-dimethylaniline and 1,2,5-trithiepane fractions were identified as non-proteinaceous extract components. N,N-dimethylaniline had a LC50 = 136.1 nL and LC90 = 413.8 nL, suggesting that it could be responsible for toxicity in P. nigrispinus saliva.  相似文献   

18.
高希武  梁同庭 《昆虫学报》1993,36(2):167-171
在一定时间内,刚特拉津 (Atrazinc)对棉铃虫 Heliothis armigera 幼虫羧酸酯酶以及GSH-S-转移酶(GST)活性有明显的诱导作用,羧酸酯酶活性最高增加146%,GST增加280%。 对羧酸酯酶的诱导高峰时间要落后于GST,不同施药剂量的诱导高峰时间以及导增加的量也不相同。 敌敌畏对家蝇Musca domestica vicina GST活性没有明显的诱导作用,阿特拉津对家蝇GST活性也没有产生诱导作用。  相似文献   

19.
【目的】明确氯虫苯甲酰胺对沟金针虫Pleonomus canaliculatus亚致死效应的生理生化机制,阐明氯虫苯甲酰胺低致死剂量对沟金针虫食物利用、能量物质含量以及体内消化酶、保护酶和解毒酶活力的影响。【方法】室内采用土壤混药法测定氯虫苯甲酰胺对沟金针虫3龄幼虫毒力,并测定了氯虫苯甲酰胺LC10, LC25和LC40低致死剂量对沟金针虫3龄幼虫营养指标和体内能量物质含量的影响;采用酶动力学法检测了氯虫苯甲酰胺低致死剂量处理1, 6, 12, 24, 48和72 h后沟金针虫3龄幼虫体内消化酶(蛋白酶、α-淀粉酶、脂肪酶、海藻糖酶)、保护酶(CAT, POD和SOD)以及解毒酶(CarE, MFO和GST)活力的动态变化。【结果】氯虫苯甲酰胺对沟金针虫3龄幼虫有较高毒力,其LC50值为1.2397 mg/kg。LC10和LC40剂量氯虫苯甲酰胺处理沟金针虫3龄幼虫后,平均相对生长率(MRGR)和近似消化率(AD)显著降低,严重干扰其对食物的利用;LC10, LC25和LC40剂量处理后沟金针虫3龄幼虫体内主要的能量物质(蛋白质、脂质、碳水化合物、海藻糖)含量和消化酶活力均明显降低,而解毒酶和保护酶活力显著增加,最终延缓其生长发育。【结论】氯虫苯甲酰胺对沟金针虫幼虫具有很高的杀虫活性,低致死剂量氯虫苯甲酰胺处理沟金针虫幼虫后,通过抑制消化酶活性,使其对食物的利用能力降低和生长发育延缓,以及诱导解毒酶和保护酶活性来阻止外界毒物侵害。研究结果为阐明氯虫苯甲酰胺对沟金针虫的亚致死效应机制及作用机理提供了一定的理论基础。  相似文献   

20.
蛇床子素粉剂对玉米象成虫的杀虫活性及酶活性的影响   总被引:2,自引:0,他引:2  
研究1.0%蛇床子素(osthole)粉剂对玉米象Sitophilus zeamais Motschusky成虫的杀虫活性及其对玉米象成虫羧酸酯酶、乙酰胆碱酯酶、谷胱甘肽S-转移酶及蛋白质活性的影响。结果表明,1.0%蛇床子素粉剂对玉米象成虫有很好的杀虫活性,处理玉米象成虫3d后,0.8mg/kg以上剂量的蛇床子素粉剂对玉米象成虫的校正死亡率达100%;用0.19mg/kg蛇床子素粉剂处理玉米象成虫2d后,试虫体内乙酰胆碱酯酶、羧酸酯酶和蛋白质活性均表现出受抑制,而谷胱甘肽S-转移酶活性随处理时间的延长整体趋势表现出被诱导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号