首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single amounts of α or β ecdysone were injected during the last larval instar of Aeshna cyanea at various times after ecdysis. In these experimental conditions, α and β ecdysone had similar effects. Very large amounts of brown or black cuticle appeared on the tarsal claws soon after hormone injection, so that the cuticular synthesis of the larvae which were injected at the beginning of the last stage appears about two or three times more quickly than in controls. Nearly all the larval characters were exhibited by animals injected on the day of or the day after the last larval ecdysis. If the hormonal injection was further delayed, only adultoid forms were obtained. No perfect adults appeared. The effects evoked by α or β ecdysone may be different from one organ to another.On the other hand, some results were different according to the type of ecdysone. Darkening of the tarsal claws (and perhaps sclerotization) appears sooner when β ecdysone is supplied. The morphology of the external organs which degenerate during metamorphosis is not always the same after injection of equal amounts of α or β ecdysone at the same time. The regression of the larval organs seems to be more explicit and appears sooner when β ecdysone was administrated. The morphogenesis of the organs which grow during metamorphosis was either weaker or non-existent with β ecdysone.These results are discussed with regard to previous work.  相似文献   

2.
Retrograde BMP signaling in neurons plays conserved roles in synaptic efficacy and subtype-specific gene expression. However, a role for retrograde BMP signaling in the behavioral output of neuronal networks has not been established. Insect development proceeds through a series of stages punctuated by ecdysis, a complex patterned behavior coordinated by a dedicated neuronal network. In Drosophila, larval ecdysis sheds the old cuticle between larval stages, and pupal ecdysis everts the head and appendages to their adult external position during metamorphosis. Here, we found that mutants of the type II BMP receptor wit exhibited a defect in the timing of larval ecdysis and in the completion of pupal ecdysis. These phenotypes largely recapitulate those previously observed upon ablation of CCAP neurons, an integral subset of the ecdysis neuronal network. Here, we establish that retrograde BMP signaling in only the efferent subset of CCAP neurons (CCAP-ENs) is required to cell-autonomously upregulate expression of the peptide hormones CCAP, Mip and Bursicon β. In wit mutants, restoration of wit exclusively in CCAP neurons significantly rescued peptide hormone expression and ecdysis phenotypes. Moreover, combinatorial restoration of peptide hormone expression in CCAP neurons in wit mutants also significantly rescued wit ecdysis phenotypes. Collectively, our data demonstrate a novel role for retrograde BMP signaling in maintaining the behavioral output of a neuronal network and uncover the underlying cellular and gene regulatory substrates.  相似文献   

3.
The wingless mutant flügellos ( fl ) of the silkworm lacks all four wings. Although wing discs of the fl seem to develop normally until the fourth larval instar, wing morphogenesis stops after the fourth larval ecdysis, probably caused by aberrant expression of an unidentified factor, referred to as fl . To characterize factor fl , the wing discs dissected from the wild-type (WT) and fl larvae were transplanted into other larvae and developmental changes of the discs were examined. When the wing disc from a WT larva was transplanted into another WT larva and allowed to grow until emergence, a small wing appeared that was covered with scales. Thus, the transplanted wing discs can develop autonomously, form scales and evert from adult skin. The WT wing discs transplanted into the fl larvae also developed at a high rate. However, the fl wing discs transplanted into the WT larvae did not develop during the larval to pupal developmental stages. These data suggest that the fl gene product (factor fl) works in the wing disc cells during wing morphogenesis. Its function cannot be complemented by hemolymph in the WT larva. It is also implied that the level of humoral factors and hormones required for wing morphogenesis are normally maintained in the fl larva.  相似文献   

4.
Temporal changes in mitotic frequency were examined in various tissues through late larval life of Bombyx mori. From the second larval ecdysis to the third and from the third larval ecdysis to the fourth, there was a definite temporal change of mitotic pattern in each tissue. In the epidermis as well as in the tracheal epithelium, mitoses began to appear about 1 day after an ecdysis, and showed a maximum 1 to 2 days after an ecdysis. In the fat body, mitoses were observed continuously through the instars, and the mitotic frequency showed a maximum state just before an ecdysis. In the abdominal muscle the frequency was highest at about the middle of the period between two successive ecdyses. Furthermore, epidermal mitoses coincided with the time when the density of epidermal nuclei per unit area decreased to a half. This suggests that epidermal mitoses may be initiated by some process related to the increase in cell size.  相似文献   

5.
Changes in ecdysone titre of the larvae of the German cockroach, Blattella germanica, exposed continuously to the juvenile hormone (JH), or to the insect growth regulator (IGR) with JH activity, can be correlated with the nature of the substance applied, its dose, and the time of application. The younger larvae exposed to the high dose of the IGR die in the next ecdysis, whereas the same treatment induces a diapause-like stage of developmental arrest in the last larval stage. The affected larvae have very little or no ecdysone, the synthesis of which takes place in the second part of the instar. The same treatment after this period has a lesser effect. The extent of the effect is correlated to the amount of ecdysone synthesized before the application of IGR. Last instar larvae exposed to the lower dose of the IGR or JH lack the peak of ecdysone normally found in the controls at the end of the second third of the instar when metamorphosis takes place. In these insects the first rise of the ecdysone titre begins towards the end of the instar, and ecdysis into the supernumerary larval stage is initiated when the ecdysone titre reached a level permitting ecdysis.A direct or indirect antagonism between these hormones, both fundamental to insect development, can explain the morphogenetic, inhibitory, and lethal effects observed in insects treated with JH or IGR with JH activity.  相似文献   

6.
Molting is required for progression between larval stages in the life cycle of nematodes. We have identified four mutant alleles of a Caenorhabditis elegans metalloprotease gene, nas-37, that cause incomplete ecdysis. At each molt the cuticle fails to open sufficiently at the anterior end and the partially shed cuticle is dragged behind the animal. The gene is expressed in hypodermal cells 4 hours before ecdysis during all larval stages. The NAS-37 protein accumulates in the anterior cuticle and is shed in the cuticle after ecdysis. This pattern of protein accumulation places NAS-37 in the right place and at the right time to degrade the cuticle to facilitate ecdysis. The nas-37 gene has orthologs in other nematode species, including parasitic nematodes, and they undergo a similar shedding process. For example, Haemonchus contortus molts by digesting a ring of cuticle at the tip of the nose. Incubating Haemonchus larvae in extracted exsheathing fluids causes a refractile ring of digested cuticle to form at the tip of the nose. When Haemonchus cuticles are incubated with purified NAS-37, a similar refractile ring forms. NAS-37 degradation of the Haemonchus cuticle suggests that the metalloproteases and the cuticle substrates involved in exsheathment of parasitic nematodes are conserved in free-living nematodes.  相似文献   

7.
Parasitism of the tobacco hornworm, Manducasexta, by the braconid wasp Cotesiacongregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid’s emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 μg. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.  相似文献   

8.
Adrenomedullin is an α-amidated 52-amino acid peptide involved in many physiological actions, among others the regulation of insulin secretion. Using immunohistochemical methods, we found that adrenomedullin immunoreactivity first appears at day 11.5 of embryonic development in the rat, coinciding with the appearance of pancreatic glucagon. The early appearance of adrenomedullin in the developing pancreas may indicate an active involvement in either the morphogenesis of the organ or its endocrine/paracrine/autocrine hormone regulation during intrauterine life. We also investigated the pattern of colocalizations of adrenomedullin with the other pancreatic hormones. At some point during development all the cell types express adrenomedullin, progressively evolving towards the adult pattern where only the pancreatic polypeptide cells contain a strong immunoreactivity for adrenomedullin. At this point the remaining cells of the islet are, in general, weakly stained. This sequential and time-dependent expression of adrenomedullin suggests a tight regulation similar to that observed for other modulatory substances responsible for embryonic morphogenesis.  相似文献   

9.
A simple and rapid extraction procedure was developed to determine simultaneously the molting hormone (MH) and juvenile hormone (JH) activity in a single insect tissue sample. From the onset of the last larval stage to adult eclosion of the greater wax moth, Galleria mellonella, three JH peaks were noted: at the time of the sixth larval ecdysis, 1 day before the seventh larval ecdysis, and at the time of adult eclosion. Three MH peaks were recorded for the male: at 1 day before the sixth larval ecdysis, 1 day before the seventh larval ecdysis, and 2 days after pupation. In the female, a fourth peak was shown at the time of adult eclosion. This fourth peak exhibits the highest molting hormone activity of all samples, 1600 Musca units/g of fresh tissue or an equivalent of 5.6 μg/g of ecdysterone. Eighty per cent of this MH accumulated in the ovary. The significance of MH and JH titers as related to the endocrine regulation of development is discussed in the light of this finding.  相似文献   

10.
At the end of each molt insects shed their old cuticle by performing the stereotyped behavior of ecdysis. In the moth, Manduca sexta, this behavior is triggered by the neuropeptide eclosion hormone (EH). Insights into the mechanism of action of EH have come from the identification of a small network of peptidergic neurons that shows increased cyclic 3′,5′-guanosine monophosphate (cGMP) immunoreactivity at ecdysis in insects from many different orders. Here we present further evidence that strengthens the association between ecdysis and the occurrence of this cGMP response in Manduca. We found that the cGMP increases occurred at every ecdysis, although some of the neurons that showed a response at larval ecdysis did not participate at pupal and adult ecdysis. Both ecdysis and the cGMP increases only required an intact connection with the brain for the first 30 min after EH injection. Interestingly, ecdysis in debrained animals only occurred if the cGMP response had been initiated, suggesting that the onset of this response marks the time at which the central nervous system is first able to drive ecdysis. Finally, we found that the appearance of sensitivity to EH for triggering the cGMP response coincided with the time at which EH first triggers ecdysis. Accepted: 6 May 1997  相似文献   

11.
We present a review of our own and literature data on reparative regeneration in ixodoid ticks (chelicerate arthropods). Ticks have a high potential for reparative regeneration and a close relationship between regeneration and development determined by similar hormonal regulatory mechanisms. These mechanisms depend on ecdysteroid hormones, which participate in the initiation of both processes, and juvenile hormones, which direct these processes either to the maintenance of larval features or to the development of nymphal and adult features. We present a detailed analysis of the regeneration of Haller's sensory organs in ixodid ticks and propose an hypothesis about the role of juvenile hormones in the modification of morphogenetic processes in this group. Furthermore, we present data on the effects of insect juvenile hormone analogs (methoprene and fenoxycarb) on the regeneration of Haller's organ, which support this hypothesis. Studies on reparative regeneration in arthropods provide a broader view of the problem of repair morphogenesis in animals.  相似文献   

12.
The influence of different concentrations of cholesterol upon the larval and postlarval development of Hylemya brassicae has been investigated using an artificial diet and axenic culture conditions.In contrast with other insects studied, H. brassicae larvae are extremely sensitive to cholesterol, even in minute concentrations, until after their second ecdysis. Concentrations of 0.1 to 0.4g/100 ml disturb the second moulting process in a typical way that could indicate an endocrine unbalance and result in a very high mortality during this process. When cholesterol at a concentration of 0.4g/100 ml is administered to the larvae after the second ecdysis, there is no longer an adverse effect on the further larval and postlarval development.The unusual sensitivity of young cabbage root fly larvae for cholesterol seems to point out some significant differences in the sterol requirements and metabolism of the species in comparison with other insects studied.  相似文献   

13.
Belozerov BH 《Ontogenez》2001,32(3):163-179
We present a review of our own and literature data on reparative regeneration in ixodid ticks (chelicerate arthropods). Ticks have a high potential for reparative regeneration and a close relationship between regeneration and development determined by similar hormonal regulatory mechanisms. These mechanisms depend on ecdysteroid hormones, which participate in the initiation of both processes, and juvenile hormones, which direct these processes either to the maintenance of larval features or to the development of nymphal and adult features. We present a detailed analysis of the regeneration of Haller's sensory organs in ixodid ticks and propose an hypothesis about the role of juvenile hormones in the modification of morphogenetic processes in this group. Furthermore, we present data on the effects of insect juvenile hormone analogs (methoprene and fenoxycarb) on the regeneration of Haller's organ, which support this hypothesis. Studies on reparative regeneration in arthropods provide a broader view of the problem of repair morphogenesis in animals.  相似文献   

14.
Biosynthesis of most peptide hormones and neuropeptides requires proteolytic excision of the active peptide from inactive proprotein precursors, an activity carried out by subtilisin-like proprotein convertases (SPCs) in constitutive or regulated secretory pathways. The Drosophila amontillado (amon) gene encodes a homolog of the mammalian PC2 protein, an SPC that functions in the regulated secretory pathway in neuroendocrine tissues. We have identified amon mutants by isolating ethylmethanesulfonate (EMS)-induced lethal and visible mutations that define two complementation groups in the amon interval at 97D1 of the third chromosome. DNA sequencing identified the amon complementation group and the DNA sequence change for each of the nine amon alleles isolated. amon mutants display partial embryonic lethality, are defective in larval growth, and arrest during the first to second instar larval molt. Mutant larvae can be rescued by heat-shock-induced expression of the amon protein. Rescued larvae arrest at the subsequent larval molt, suggesting that amon is also required for the second to third instar larval molt. Our data indicate that the amon proprotein convertase is required during embryogenesis and larval development in Drosophila and support the hypothesis that AMON acts to proteolytically process peptide hormones that regulate hatching, larval growth, and larval ecdysis.  相似文献   

15.
Each larval moult in Manduca sexta consists of an identical series of developmental and behavioural events leading up to ecdysis. Injections of eclosion hormone into staged larvae in any instar resulted in the premature elicitation of the larval pre-ecdysis behaviour, comprising a rhythmic sequence of muscle contractions, followed by the larval ecdysis behaviour.A marked depletion of eclosion hormone stores form the ventral chain of ganglia coincided with each larval ecdysis and in the moult to the fifth instar, eclosion hormone activity appeared in the blood at the onset of the pre-ecdysis behaviour.Responsiveness to eclosion hormone for pre-ecdysis and ecdysis behaviour developed about 12 and 6 hr before normal ecdysis, respectively. Elicitation of ecdysis behaviour by exogenous hormone inhibited both subsequent behavioural responses to eclosion hormone and endogenous hormonal release.In conclusion, the behavioural programme involved in each larval ecdysis appears to be controlled by the eclosion hormone.  相似文献   

16.
Previous work has shown that a transgene consisting of a fusion between the rat atrial natriuretic peptide and a green fluorescent protein reporter (ANF-gfp) is processed, localized, and released, as would be an endogenous neuropeptide when it is expressed in the nervous system of Drosophila melanogaster using the GAL4/UAS expression system. Here we have tested the utility of this targetable transgene for detecting neuropeptide release following the execution of a peptide-controlled behavior. For the behavior we used ecdysis, the behavior expressed by insects to shed their old cuticle at the end of the molt. We found that larval ecdysis was accompanied by a readily detectable reduction in gfp fluorescence from relevant secretory cells in the periphery and peptidergic neurons in the CNS. We also found that expression of the ANF-gfp products did not have detrimental effects on larval ecdysis or adult circadian rhythmicity, when the transgene was expressed in peptidergic cells that are known to control these behaviors. Finally, we used a broadly expressed GAL4 driver to show that the UAS-ANF-gfp transgene could be used to identify axons that show a reduction in gfp fluorescence following the expression of ecdysis behavior. These findings, coupled with the availability of an increasing number of strains bearing different GAL4 drivers, suggest that this transgene will be a useful tool for identifying peptidergic neurons and secretory cells (and, eventually, their secretory product) that release their peptide content during the occurrence, in the intact animal, of a developmental, physiological or behavioral process of interest.  相似文献   

17.
The tobacco hornworm, Manduca sexta, undergoes several larval molts before transforming into a pupa and then an adult moth. Each molt culminates in ecdysis, when the old cuticle is shed. Prior to each larval ecdysis, the old cuticle is loosened by pre-ecdysis behavior, which consists of rhythmic compressions that are synchronous along the abdomen and on both body sides, and rhythmic retractions of the abdominal prolegs. Both pre-ecdysis and ecdysis behaviors are triggered by a peptide, eclosion hormone. The aim of the present study was to investigate the neural circuitry underlying larval preecdysis behavior. The pre-ecdysis motor pattern was recorded in isolated nerve cords from eclosion hormone-treated larvae, and the effects of connective transections and ionic manipulations were tested. Our results suggest that the larval pre-ecdysis compression motor pattern is coordinated and maintained by interneurons in the terminal abdominal ganglion that ascend the nerve cord without chemical synaptic relays; these interneurons make bilateral, probably monosynaptic, excitatory connections with identified pre-ecdysis motor neurons throughout the abdominal nerve cord. This model of the organization of the larval pre-ecdysis motor pattern should facilitate identification of the relevant interneurons, allowing future investigation of the neural basis of the developmental weakening of the pre-ecdysis motor pattern that accompanies the larval-pupal transformation.Abbreviations A3, A4... abdominal ganglia 3, 4... - AT terminal abdominal ganglion - ALE anterior lateral external muscle - DN dorsal nerve - DNA anterior branch of the dorsal nerve - DNL lateral branch of the dorsal nerve - DNP posterior branch of the dorsal nerve - EH eclosion hormone - TP tergopleural muscle - VN ventral nerve - VNA anterior branch of the ventral nerve - VNL lateral branch of the ventral nerve - VNP posterior branch of the ventral nerve  相似文献   

18.
Summary At the culmination of each molt, the larval tobacco hornworm exhibits a pre-ecdysis behavior prior to shedding its old cuticle at ecdysis. Both pre-ecdysis and ecdysis behaviors are triggered by the peptide, eclosion hormone (EH). Pre-ecdysis behavior consists of rhythmic abdominal compressions that loosen the old larval cuticle. This behavior is robust at larval molts, but at the larval-pupal molt the only comparable behavior consists of rhythmic dorso-ventral flexions of the anterior body. These flexions appear to be an attenuated version of the larval pre-ecdysis behavior because (1) they show the same EH dependence, and (2) the motor patterns recorded from EH treated, deafferented larval and pupal preparations are similar except that the pupal pattern is much weaker. Both patterns are characterized by rhythmic, synaptically-driven bursts of action potentials in motoneurons MN-2 and MN-3, which occur synchronously in all segments. However, the synaptic drive to the motoneurons and their resultant levels of activity are reduced during the pupal pre-ecdysis motor pattern, especially in posterior abdominal segments. Although the dendritic arbors of both motoneurons regress somewhat during the larval-pupal transformation, this does not appear to be the primary source of diminished synaptic drive because regression is greatest in the segments in which synaptic inputs remain the strongest. The developmental weakening of the pre-ecdysis motor pattern thus may be due to changes at the interneuronal level.Abbreviations A2, A3... abdominal segments 2, 3, etc. - ALE anterior lateral external muscle - day L3 third day of the 5th larval instar - day P0 the day of pupal ecdysis - DN a anterior branch of the dorsal nerve - EH eclosion hormone - HPLC high performance liquid chromatography - TP tergopleural muscle  相似文献   

19.
Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling mechanisms and pattern formation, little is known about these same processes in the peripodial epithelium. We address this topic by focusing on morphogenesis, compartmental organization, proliferation and cell lineage of the PE in wing, second thoracic leg (T2) and eye discs. We show that a subset of peripodial cells in different imaginal discs undergo a cuboidal-to-squamous cell shape change at distinct larval stages. We find that this shape change requires both Hedgehog and Decapentapelagic, but not Wingless, signaling. Additionally, squamous morphogenesis shifts the anteroposterior (AP) compartment boundary in the peripodial epithelium relative to the stationary AP boundary in the disc proper. Finally, by lineage tracing cells in the PE, we surprisingly find that peripodial cells are displaced into the disc proper during larval development and this movement leads to Ubx repression.  相似文献   

20.
The synthetic racemic C18 Hyalophora cecropia juvenile hormone (JH-I) is injected at does of between 10 and 200 mug/animal at the end of the fourth instar of Locusta migratoria. The effects on mortality, length of the fourth and fifth instars, pigmentation and morphogenesis are reported. Higher doses of JH-I produce a higher mortality than lower doses. But mortality can also occur following the injection of oil which sometimes takes place only a few hours before the ecdysis. In no case is JH-I able to shorten the length of the instar. Many animals moult at the same time as the controls, but some of them, both in the fourth and fifth instars, show an important increase in the length of the instar because of an inhibition of the ecdysis. The effect of JH-I on pigmentation is very important and doses higher than 50 mug/animal present a greater effect than an implantation of one pair of corpora allata, both on the number of insects which turn green and on the intensity of this green pigmentation. At the metamorphosis the larvae injected with JH-I produce imperfect imagos and supernumerary larvae, the number of which depends upon the dose. Nevertheless the morphogenetic effect is considerably lower than that of one pair of corpora allata. We have reason to think that this is only due to the time of injection and not to the activity on morphogeneis of the injected hormone. JH-I is injected at the dose of 200 mug in young females which were allatectomized beforehand to prevent oocytes maturation. The hormone completely counter-balances the lack of the corpora allata and some days after the injection the oocytes are in the same state of development as those of the controls. All the results indicate that the synthetic racemic C18 juvenile hormone of Hyalophora cecropia shows a quite similar activity to the secretion of the corpora allata on Locusta migratoria although it has been said for some time that this hormone was not the principal one in locusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号