首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Secondary structure formation in the disordered terminal regions of flagellin were studied by circular dichroic (CD) spectroscopy, Fourier transform infrared spectroscopy, and x-ray diffraction. The terminal regions of flagellin are known to form alpha-helical bundles upon polymerization into flagellar filaments. We found from comparative CD studies of flagellin and its F40 tryptic fragment that a highly alpha-helical conformation can be induced and stabilized in the terminal regions in 2,2,2-trifluoroethanol (TFE) containing solutions, which is known to promote intra-molecular hydrogen bonding. Two oligopeptides, N(37-61) and C(470-494), each corresponding to a portion of terminal regions and predicted to have a high alpha-helix forming potential, were synthesized and studied. Both peptides were disordered in an aqueous environment, but they showed a strong tendency to assume alpha-helical structure in solutions containing TFE. On the other hand, peptides were found to form transparent gels at high concentrations (> 15 mg/ml) and all three methods confirmed that the peptides become ordered into a predominantly beta structure upon gel formation. Our results show that large segments of the disordered terminal regions of flagellin can adopt alpha-helical as well as beta structure depending on the environmental conditions. This high degree of conformational adaptability may be reflecting some unique characteristics of the flagellin termini, which are involved in self-assembly and polymorphism of flagellar filament.  相似文献   

2.
Terminal regions of flagellin from Salmonella typhimurium, residues 1 to 65 and 451 to 494, have no ordered tertiary structure in solution, which makes them very susceptible to proteolytic degradation. Flagellin was subjected to mild controlled proteolytic treatment with highly specific proteases to remove terminal segments from the disordered regions. It is demonstrated here that various fragments can be readily prepared that differ from each other in 1 x 10(3) to 2 x 10(3) Mr segments in their NH2- or COOH-terminal regions. Terminally deleted fragments of flagellin were used to clarify the role of the disordered regions in the self-assembly of flagellin. The polymerization ability of the fragments was tested by inducing filament formation with ammonium sulfate. We found that fragments of flagellin containing large terminal deletions could form straight filaments, although the stability of these filaments required high salt concentrations. Even a fragment lacking the whole mobile COOH-terminal part of flagellin and 36 residues from the NH2-terminal region could form long filaments. The fragments could be also polymerized onto native flagellar seeds, suggesting that the subunit packing of the filaments of fragments is similar to that of the native ones. The fragments could also copolymerize with native flagellin, resulting in various helical forms. Filaments of fragments were found to be straight at both pH 4.0 and pH 12.5, indicating that they might have lost their polymorphic ability. Our results show that the major part of the disordered terminal regions of flagellin is not essential for polymerization, but it does play an important role in stabilization of the filaments and in influencing their polymorphic conformation.  相似文献   

3.
Structural organization of flagellin   总被引:8,自引:0,他引:8  
The terminal regions of flagellin from Salmonella typhimurium have been reported to be disordered in solution, whereas the central part of the molecule contains protease-resistant, compact structural units. Here, conformational properties of flagellin and its proteolytic fragments were investigated and compared to characterize the domain organization and secondary structure of flagellin. Deconvolution analysis of the calorimetric melting profiles of flagellin and its fragments suggests that flagellin is composed of three co-operative units or domains. The central part of the molecule, residues 179 to 418, consists of two domains (G1 and G2), whereas the third domain (G3) is discontinuous, constructed from segments 67 to 178 and 419 to 448. Secondary structure prediction and analysis of far-ultraviolet circular dichroic spectra have revealed that G1 and G2 consist predominantly of beta-structure with a little alpha-helical content. G3 contains almost equal amounts of alpha and beta-structure, while in the terminal parts of flagellin the ordered secondary structure seems to be entirely alpha-helical.  相似文献   

4.
Terminal regions of flagellin are disordered in solution   总被引:8,自引:0,他引:8  
Limited proteolysis of flagellin from Salmonella typhimurium SJW1103 by subtilisin, trypsin and thermolysin results in homologous degradation patterns. The terminal regions of flagellin are very sensitive to proteolysis. These parts are degraded into small oligopeptides at the very early stage of a mild digestion that yields a relatively stable fragment with a molecular weight of 40,000. Further proteolytic degradation results in a stable 27,000 Mr fragment. The 40,000 Mr tryptic fragment has been identified as residues 67 to 446 of the flagellin sequence, while the 27,000 Mr fragment involves the 179 to 418 segment. The NH2-terminal sequence positions for the corresponding fragments produced by subtilisin are 60 and 174 for the 40,000 Mr and 27,000 Mr fragments, respectively. The fragments lost their polymerizing ability. Structural properties of flagellin and its 40,000 Mr tryptic fragment were compared by circular dichroism spectroscopy and differential scanning calorimetry. Analysis of the calorimetric melting profiles suggests that terminal parts of flagellin have no significant internal stability and they are in extensive contact with water. However, these regions contain some secondary structure, probably alpha-helices, as revealed by comparison of the circular dichroic spectra in the far-ultraviolet region. Our results indicate that, although the terminal regions of flagellin may contain some alpha-helical secondary structure of marginal stability, they have no compact ordered tertiary structure in solution. On the contrary, the central region of the molecule involves at least two compact structural units.  相似文献   

5.
A Tamura  K Kimura  K Akasaka 《Biochemistry》1991,30(47):11313-11320
Structural transitions of the protein Streptomyces subtilisin inhibitor (SSI) from the native state to the cold-denatured and heat-denatured states were studied by 1H NMR spectroscopy in the temperature range from -10 to 60 degrees C in the acidic pH range. Assignments of some of the 1H NMR signals of SSI in the cold-denatured and heat-denatured states were performed by a combined use of selective deuteration and site-directed mutagenesis. Throughout the pH range from 2.1 to 3.1, both transitions were cooperative and basically only three distinct spectra corresponding to structures in the cold-denatured, native, and heat-denatured states were detected. In the cold-denatured state, the side-chain signals of Met73, His106, at least one Val, and two Leu were observed at distinctly shifted positions from those for a random-coiled structure, suggesting the formation of a tertiary structure, while those of Met70, His43, and Ala2 were observed at positions for a random-coiled structure. This tertiary structure in the cold-denatured state is entirely different from that in the native state, as some amino acid residues exposed to the solvent in the native state (e.g., Met73, His106) are buried while those sequestered in the native state (e.g., His43) are exposed. In the heat-denatured state, however, most 1H NMR signals were observed at random-coiled positions, indicating that there is much less tertiary structure in the heat-denatured state than in the cold-denatured state. At pH values below 2.09, a structural transition was observed from the cold-denatured state to the heat-denatured state without passing through the native state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The shape of the flagellar filaments of the bacterium Salmonella typhimurium under ordinary conditions is a left-handed helix. In addition to the normal wild-type filament, non-helical (i.e. straight), right-handed helical (early), or circular (semi-coiled and coiled) filaments and filament with small amplitude (fl-type) have been found in mutants or in filaments reconstituted in vitro. We analysed wild-type flagellin and flagellins from 17 flagellar-shape mutants (6 with straight filaments, 6 with curly filaments, 4 with coiled filaments and 1 with fl-type filament) by amino acid sequencing to identify the mutational sites. All mutant flagellins except that of the fl-type filament had single mutations; the fl-type flagellin had two mutations in the molecule. The sites of these mutations were localized in alpha-helical segments of the terminal regions of flagellin. A possible mechanism of the polymorphism of the flagellar filament is discussed.  相似文献   

7.
Helical filaments of bacterial flagella are built up by a self-assembly process from thousands of flagellin subunits. To clarify how the disordered terminal regions of flagellin interact upon filament formation, polymerization ability of various terminally truncated fragments was investigated. Fragments deprived of 19 N-terminal residues were able to bind to the end of filaments, however, only a single layer was formed. Removal of C-terminal segments or truncation at both ends resulted in the complete loss of binding ability. Our observations are consistent with the coiled-coil model of filament formation, which suggests that the alpha-helical N- and C-terminal regions of axially adjacent subunits form an interlocking pattern of helical bundles upon polymerization.  相似文献   

8.
The axial structure of the bacterial flagellum is composed of many different proteins, such as hook protein and flagellin, and each protein forms a short or long axial segment one after another in a well-defined order along the axis. Under physiological conditions, most of these proteins are stable in the monomeric state in solution, and spontaneous polymerization appears to be suppressed, as demonstrated clearly for flagellin, probably to avoid undesirable self-assembly in the cytoplasmic space. However, no systematic studies of the possible associations between monomeric axial proteins in solution have been carried out. We therefore studied self and cross-association between hook protein, flagellin and three hook-associated proteins, HAP1, HAP2 and HAP3, in all possible pairs, by gel-filtration and analytical centrifugation, and found interactions in the following two cases only. Flagellin facilitated HAP3 aggregation into beta-amyloid-like filaments, but without stable binding between the two. Addition of HAP3 to HAP2 resulted in disassembly of preformed HAP2 decamers and formation of stable HAP2-HAP3 heterodimers. HAP2 missing either of its disordered terminal regions did not form the heterodimer, whereas HAP3 missing either of its disordered terminal regions showed stable heterodimer formation. This polarity in the heterodimer interactions suggests that the interactions between HAP2 and HAP3 in solution are basically the same as those in the flagellar axial structure. We discuss these results in relation to the assembly mechanism of the flagellum.  相似文献   

9.
The terminal regions of Salmonella flagellin are essential for polymerization to form the flagellar filament. It has recently been suggested, on the basis of results from circular dichroism spectroscopy and scanning calorimetry, that these regions are disordered in solution. We report here direct evidence for disorder and mobility in the terminal regions of flagellin using 400 MHz proton nuclear magnetic resonance (n.m.r.) spectroscopy. Comparison of the n.m.r. spectra of monomeric and polymeric flagellin shows that the terminal regions become organized when polymerized to form the filament.  相似文献   

10.
A Tamura  K Kimura  H Takahara  K Akasaka 《Biochemistry》1991,30(47):11307-11313
Cold denaturation and heat denaturation of the protein Streptomyces subtilisin inhibitor (SSI) were studied in the pH range 1.84-3.21 and in the temperature range -3-70 degrees C by circular dichroism and scanning microcalorimetry. The native structure of the protein was apparently most stabilized at about 20 degrees C and was denatured upon heating and cooling from this temperature. Each denaturation was reversible and cooperative, proceeding in two-state transitions, that is, from the native state to the cold-denatured state or from the native state to the heat-denatured state. The two denatured states, however, were not perfect random-coiled structures, and they differed from each other, indicating that there exist three states in this temperature range, i.e., cold denatured, native, and heat denatured. The difference between the cold and heat denaturations was indicated first by circular dichroism. The isodichroic point for the transition from the native state to the cold-denatured state was different from that from the native state to the heat-denatured state in the pH range between 3.21 and 2.45. Moreover, molar ellipticity for the cold-denatured state was different from that of the heat-denatured state, and the transition from the former to the latter was observed at pH values below 2. Values of van't Hoff enthalpies from the native state to the heat-denatured state at pH values between 3.21 and 2.45 were obtained by curve fitting of the CD data, and delta Cp = 1.82 (+/- 0.11) [kcal/(mol.K)] was obtained from the linear plot of the enthalpies against temperature. The parameters obtained from the heat denaturation studies gave curves for delta G zero which were not in agreement with the experimental data in the cold denaturation region when extrapolated to the low temperature. Moreover, the value of the apparent delta Cp for the cold denaturation in the pH range 3.03-2.45 was estimated to be different from that for the heat denaturation, indicating that the mechanism of the cold denaturation of SSI is different from a simple cold denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Flagellin, the monomeric subunit of flagella, is an inducer of proinflammatory mediators. Bacterial flagellin genes have conserved domains (D1 and D2) at the N terminus and C terminus and a middle hypervariable domain (D3). To identify which domains induced proinflammatory activity, r6-histidine (6HIS)-tagged fusion constructs were generated from the Salmonella dublin (SD) fliC flagellin gene. A full-length r6HIS SD flagellin (6HIS flag) induced IkappaBalpha loss poststimulation and NF-kappaB activation in Caco-2BBe cells and was as potent as native-purified SD flagellin. IFN-gamma-primed DLD-1 cells stimulated with 1 microg/ml of 6HIS flag induced high levels of NO (60 +/- 0.95 microM) comparable to the combination of IL-1beta and IFN-gamma (77 +/- 1.2) or purified native SD flag (66.3 +/- 0.98). Selected rSD flagellin proteins representing the D1, D2, or D3 domains alone or in combination were tested for proinflammatory properties. Fusion proteins representing the D3, amino, or carboxyl regions alone did not induce proinflammatory mediators. The results with a recombinant protein containing the amino D1 and D2 and carboxyl D1 and D2 separated by an Escherichia coli hinge (ND1-2/ECH/CD2) indicated that D1 and D2 were bioactive when coupled to an ECH element to allow protein folding. This chimera, but not the hinge alone, induced IkappaBalpha degradation, NF-kappaB activation, and NO and IL-8 production in two intestinal epithelial cell lines. ND1-2/ECH/CD2-1 also induced high levels of TNF-alpha (900 pg/ml) in human monocytes comparable to native SD flagellin (991.5 pg/ml) and 6HIS flag (987 pg/ml). The potent proinflammatory activity of flagellin, therefore, resides in the highly conserved N and C D1 and D2 regions.  相似文献   

12.
Motility of the alkalophilic Bacillus sp. C-125, a flagellate bacterium, was demonstrated to be Na(+)- and pH-dependent. Flagellin protein from this strain was purified to homogeneity and the N-terminal sequence determined. Using the hag gene of Bacillus subtilis as a probe, the hag gene of Bacillus sp. C-125 was identified and cloned into Escherichia coli. Sequencing of this hag gene revealed that it encodes a protein of 272 amino acids (M(r) 29,995). The predicted N terminal sequence of this protein was identical to that determined by N-terminal sequencing of the flagellin protein from strain C-125. The alkalophilic Bacillus sp. C-125 flagellin shares homology with other known flagellins in both the N- and C-terminal regions. The middle portion, however, shows considerable differences, even from that of flagellin from the related species, B. subtilis.  相似文献   

13.
Within the bacterial flagellum the basal-body rod, the hook, the hook-associated proteins (HAPs), and the helical filament constitute an axial substructure whose elements share structural features and a common export pathway. We present here the amino acid sequences of the hook protein and the three HAPs of Salmonella typhimurium, as deduced from the DNA sequences of their structural genes (flgE, flgK, flgL and fliD, respectively). We compared these sequences with each other and with those for the filament protein (flagellin) and four rod proteins, which have been described previously (Joys, 1985; Homma et al., 1990; Smith & Selander, 1990). Hook protein most strongly resembled the distal rod protein (FlgG) and the proximal HAP (HAP1), which are thought to be attached to the proximal and distal ends of the hook, respectively; the similarities were most pronounced near the N and C termini. Hook protein and flagellin, which occupy virtually identical helical lattices, did not resemble each other strongly but showed some limited similarities near their termini. HAP3 and HAP2, which form the proximal and distal boundaries of the filament, showed few similarities to flagellin, each other, or the other axial proteins. With the exceptions of the N-terminal region of HAP2, and the C-terminal region of flagellin, proline residues were absent from the terminal regions of the axial proteins. Moreover, with the exception of the N-terminal region of HAP2, the terminal regions contained hydrophobic residues at intervals of seven residues. Together, these observations suggest that the axial proteins may have amphipathic alpha-helical structure at their N and C termini. In the case of the filament and the hook, the terminal regions are believed to be responsible for the quaternary interactions between subunits. We suggest that this is likely to be true of the other axial structures as well, and specifically that interaction between N-terminal and C-terminal alpha-helices may be important in the formation of the axial structures of the flagellum. Although consensus sequences were noted among some of the proteins, such as the rod, hook and HAP1, no consensus extended to the entire set of axial proteins. Thus the basis for recognition of a protein for export by the flagellum-specific pathway remains to be identified.  相似文献   

14.
Immunological methods were used to examine the flagellin production of Salmonella typhimurium strains that carried a mutation in one of the two possible genes for flagellin (H1 or H2) and also were incapable of expressing the other gene. Some mutants produced flagellin that was excreted into the culture medium; others accumulated flagellin intracellularly. These two phenotypes were detected in both H1 and H2 mutants. The mutation sites were mapped on the corresponding deletion map (consisting of 21 segments in the case of H1 and 31 segments in the case of H2). H1 and H2 mutations causing excretion of flagellin were clustered mainly in segment 12 and segment 6 from the proximal end, respectively, suggesting that the corresponding segments of the flagellins play a role in polymerization. Mutations causing accumulation in the cytoplasm were clustered in segments 19 to 21 of the H1 map and in segments 25 to 29 of the H2 map, suggesting that an essential region for flagellin transport exists toward the C terminus of flagellin.  相似文献   

15.
16.
Products of the reaction of 4-hydroxy-2-nonenal (4HNE) with native and heat-denatured Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (G6PDH) were analyzed to determine the structure and position of the protein modifications. Matrix assisted laser desorption time-of-flight mass spectrometry was used to measure molecular weights of the modified proteins and determine mass maps of peptides formed by digestion with cyanogen bromide. The molecular weight data show that one to two 4HNE molecules add to each subunit of native enzyme while approximately nineteen 4HNE molecules add to each subunit of heat-denatured enzyme. Peptides are observed in the cyanogen bromide mass map of modified native G6PDH that are consistent with selective modification of two segments of the amino acid sequence. One modified segment contains Lysine-182 that has been found to be part of the enzyme active site. Peptides are observed in the cyanogen bromide mass map of modified heat-denatured enzyme that are consistent with extensive modification of several segments of the amino acid sequence. The magnitude of the mass differences between modified and unmodified peptides were approximately 156 Da, consistent with a 1, 4-addition of 4HNE. These results support the conclusion that 4HNE inactivates G6PDH by selectively modifying only two or three sites in the protein by a 1, 4-addition reaction and that some aspect of the tertiary structure of the enzyme directs those modification reactions.  相似文献   

17.
18.
The folding of heat-denatured ovalbumin, a non-inhibitory serpin with a molecular size of 45 kDa, was examined. Ovalbumin was heat-denatured at 80 degrees C under nonreducing conditions at pH 7.5 and then cooled either slowly or rapidly. Slow cooling allowed the heat-denatured ovalbumin to refold to its native structure with subsequent resistance to digestion by trypsin. Upon rapid cooling, by contrast, the heat-denatured molecules assumed the metastable non-native conformations that were susceptible to trypsin. The non-native species were marginally stable for several days at a low temperature, but the molecules were transformed slowly into the native conformation. Considering data from size-exclusion chromatography and from analyses of CD, intrinsic tryptophan fluorescence, and adsorption of the dye 1-anilinonaphthalene-8-sulfonate, we postulated that the non-native species that accumulated upon rapid cooling were compact but structureless globules with disordered side chains collectively as a folding intermediate. Temperature-jumped CD experiments revealed biphasic kinetics for the refolding process of heat-denatured ovalbumin, with the features of increasing and subsequently decreasing amplitude of the rapid and the slow phases, respectively, with the decrease in folding temperature. The temperature dependence of the refolding kinetics indicated that the yield of renaturation was maximal at about 55 degrees C. These findings suggested the kinetic partitioning of heat-denatured ovalbumin between alternative fates, slow renaturation to the native state and rapid collapse to the metastable intermediate state. Analysis of disulfide pairing revealed the formation of a scrambled form with non-native disulfide interactions in both the heat-denatured state and the intermediate state that accumulated upon rapid cooling, suggesting that non-native disulfide pairing is responsible for the kinetic barriers that retard the correct folding of ovalbumin.  相似文献   

19.
The hypervariable D3 domain of Salmonella flagellin, composed of residues 190-283, is situated at the outer surface of flagellar filaments. A flagellin mutant deprived of the complete D3 domain (ΔD3_FliC) exhibited a significantly decreased thermal stability (Tm 41.9 °C) as compared to intact flagellin (Tm 47.3 °C). However, the stability of filaments formed from ΔD3_FliC subunits was virtually identical with that of native flagellar filaments. While D3 comprises the most stable part of monomeric flagellin playing an important role in the stabilization of the other two (D1 and D2) domains, the situation is reversed in the polymeric state. Upon filament formation, ordering of the disordered terminal regions of flagellin in the core part of the filament results in the stabilization of the radially arranged D1 and D2 domains, and there is a substantial increase of stability even in the distant outermost D3 domain, which is connected to D2 via a pair of short antiparallel β-strands. Our experiments revealed that crosslinking the ends of the isolated D3 domain through a disulfide bridge gives rise to a stabilization effect reminiscent of that observed upon polymerization. It appears that the short interdomain linker between domains D2 and D3 serves as a stabilization center that facilitates propagation of the conformational signal from the filament core to the outer part of filament. Because D3 is a largely independent part of flagellin, its replacement by heterologous proteins or domains might offer a promising approach for creation of various fusion proteins possessing polymerization ability.  相似文献   

20.
Flagellin is a highly effective adjuvant for CD4(+) T cell and humoral immune responses. However, there is conflicting data in the literature regarding the ability of flagellin to promote a CD8(+) T cell response. In this article, we report that immunization of wild-type, TLR5(-/-), and MyD88(-/-) adoptive transfer recipient mice revealed the ability of flagellin fusion proteins to promote OVA-specific CD8(+) T cell proliferation independent of TLR5 or MyD88 expression by the recipient animal. Wild-type and TLR5(-/-) APCs were able to stimulate high levels of OVA-specific CD8(+) T cell proliferation in vitro in response to a flagellin fusion protein containing full-length OVA or the SIINFEKL epitope and 10 flanking amino acids (OVAe), but not to OVA and flagellin added as separate proteins. This effect was independent of the conserved regions of flagellin and occurred in response to OVAe alone. Comparison of IFN-γ production by CD8(+) effector cells revealed higher levels of SIINFEKL peptide-MHC I complexes on the surface of APCs that had been pulsed with OVAe-flagellin fusion proteins than on cells pulsed with OVA. Inhibition of the proteasome significantly reduced Ag-specific proliferation in response to OVAe fusion proteins. In summary, our data are consistent with the conclusion that flagellin-OVA fusion proteins induce an epitope-specific CD8(+) T cell response by facilitating Ag processing and not through stimulatory signaling via TLR5 and MyD88. Our findings raise the possibility that flagellin might be an efficient Ag carrier for Ags that are poorly processed in their native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号