首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
随机单链DNA文库SELEX筛选寡核苷酸适配子方法的建立   总被引:10,自引:1,他引:9  
指数富集配基的系统进化(SELEX)技术是一种新的组合化学技术.体外构建了一个长度为81 nt、含有35个随机序列的单链DNA(ssDNA)文库,优化了ssDNA文库扩增为双链DNA (dsDNA)文库的PCR反应条件.通过对比不对称PCR和生物素-链亲和素磁珠分离方法制备ssDNA文库的效果,确定了以生物素-链亲和素磁珠分离方法制备ssDNA.由于脱氧核糖核酸的疏水性导致ssDNA文库与硝酸纤维素滤膜的结合背景过高,因此选择以微孔板为介质,分离与靶蛋白结合的适配子.经过9轮循环筛选,随机ssDNA文库与丙型肝炎病毒(HCV)核心蛋白(C蛋白)的结合率从0.5%上升到32.5%.  相似文献   

2.
目的:比较SELEX筛选中不同筛选介质的富集效果,为高通量筛选奠定基础.方法:以乙肝表面抗原(HBsAg)为靶蛋白,采用两种不同的筛选介质:硝酸纤维素膜和环氧树脂,分别将HBsAg包被其上,利用SELEX技术从随机单链DNA文库中筛选得到富集的亲和配基库,最后通过聚丙烯酰胺凝胶电泳和实时荧光定量PCR检测各自的富集效果.结果:经过16轮筛选,发现实时荧光定量PCR时,硝酸纤维素膜空白管与阳性管的循环阈值均在14循环,无明显区别;而环氧树脂空白管与阳性管的循环阈值区别明显,前者是25循环,后者是18循环.结论:在SELEX筛选中,以环氧树脂为筛选介质更易富集到与靶蛋白特异性结合的核酸适配体.  相似文献   

3.
牦牛基因组微卫星富集文库的构建与分析   总被引:13,自引:0,他引:13  
根据生物素与链亲和素的强亲和性原理,用链亲和素磁珠亲和捕捉与生物素标记的微卫星寡核苷酸探针(CA)12、(CCG)8、(CAG)8、(TTTC)8退火结合的含有接头和牦牛微卫星序列的单链限制性酶切片段,获得单链目的片段,经PCR扩增形成双链,然后克隆到pMD18-T载体上,转化至DH5α中,首次成功构建牦牛基因组微卫星富集文库。测序结果发现,阳性克隆率为77%(37/48),说明构建的牦牛基因组微卫星富集文库是一个高质量的文库。牦牛富集微卫星文库的建立和牦牛微卫星的筛选将为下一步进行牦牛基因组结构的分析、牦牛遗传连锁图谱的构建、分子进化和系统发育研究、标记辅助选择以及经济性状的QTL定位提供大量的微卫星标记。  相似文献   

4.
新型蛋白质配体-亲和体研究进展   总被引:1,自引:0,他引:1  
亲和体(affibody)是一种衍生于葡萄球菌A蛋白B结构域的人工蛋白质分子.B结构域含58个氨基酸,形成3个α螺旋结构,分子质量约为6.5 ku.其中第一及第二螺旋中的13个特定位点的氨基酸对其结构无明显影响,这些位点可被随机突变形成理论上可与任何靶分子结合的亲和体文库.筛选该文库可获得能与某一靶分子特异结合的亲和体.亲和体与靶分子的结合特性与抗体相似,但与抗体相比具有一些独特的优势,如:通过体外筛选即可获得,以化学合成方法或原核表达即可大量制备,分子质量小、在生物体内组织穿透性强、血浆清除率高,理化稳定性好,可以通过交联或融合表达与标记分子(如荧光蛋白、生物素等)结合而不影响其与靶分子的结合能力.亲和体可作为抗体的替代品,用于蛋白质识别、分离及纯化、实验诊断、分子显像及靶向治疗.  相似文献   

5.
[目的]获得骆驼来源的与人CD133抗原特异性结合的纳米抗体。[方法]从3峰新疆双峰驼外周血中分离淋巴细胞,采用巢式PCR扩增获得cDNA并构建VHH天然噬菌体展示文库。包被CD133-606于ELISA板,对天然文库进行3轮亲和筛选,菌落PCR和基因测序确定能结合CD133的候选克隆。挑选重复序列VHH克隆构建到pET28a并转BL21用IPTG诱导表达。IMAC方法纯化重组VHH抗体蛋白,Western Blot和ELISA检测与CD133的抗原结合性。[结果]从109淋巴细胞中构建了库容为1.4×109cfu的噬菌体展示文库,Western Blot及ELISA结果显示重复4次核苷酸序列的VHH-13的纳米抗体能与CD133-606有较好的结合活性。[结论]通过对VHH天然展示文库的亲和筛选及鉴定,成功获得了能与人重组CD133胞外区特异结合的纳米抗体。  相似文献   

6.
RNA结合蛋白通过特异识别RNA底物发挥重要的生物学作用。指数富集的配体系统进化(Systematic evolution of ligands by exponential enrichment,SELEX)技术是一种体外筛选核酸底物的基本方法,SELEX技术通过重复多轮筛选从随机核酸序列库中筛选出特异性与靶物质高度亲和的核酸底物,本研究将利用该技术与二代高通量测序(NGS)相结合,体外合成含有20个随机碱基的RNA文库,将所要研究的蛋白构建到带有可被链亲和酶素磁珠捕获的SBP标记的载体上去,显著提高筛选效率,仅需1轮筛选即可获得所需RNA底物motif。通过该方法获得了人的hn RNP A1的UP1结构域特异识别AGG和AG二种RNA序列,并通过EMSA实验证实其可以与获得的RNA motif结合。这一方法的建立对于研究RNA结合蛋白识别底物的序列特异性,并进一步了解其在生物体内的调控机制有重要意义。  相似文献   

7.
通过SELEX技术体外筛选功能核酸元件是其发挥各种功能的必要前提。SELEX程序中,制备高质量的单链次级文库是最基础、最关键的技术之一,很大程度上决定了筛选的成败。全面总结了功能核酸筛选中的单链生成策略,如基于扩增的方法、酶消化技术、基于链霉亲和素包被珠的链分离和基于迁移率变化分离获得次级文库等,详细阐述了各种方法的优缺点与关键细节,以期为进一步开发高效的功能核酸筛选方法奠定基础。  相似文献   

8.
目的:利用氨甲蝶呤(MTX)偶联琼脂糖凝胶吸附法从人肝脏细胞cDNA噬菌体展示文库中筛选与MTX相互作用的蛋白。方法:以偶联于琼脂糖凝胶表面的MTX为配基,通过"结合-洗脱-扩增"过程筛选与MTX相互作用的噬菌体。利用PCR对筛选结果进行监测,对筛选得到的噬菌体PCR产物进行序列测定和基因同源性分析。结果:通过五轮亲和筛选富集到特异噬菌体克隆,再通过PCR获得cDNA插入片段。通过BLAST程序搜索GenBank,证明筛选到的片段与人PI-3K相关蛋白激酶 SMG-1异构体1 蛋白同源性达100%。结论:利用偶联MTX的琼脂糖凝胶作为筛选基质,从T7噬菌体展示cDNA文库中富集特异噬菌体是一种方便、高效的MTX相互作用靶蛋白筛选方法。本方法可为探讨小分子药物的分子作用机制提供借鉴和参考.  相似文献   

9.
倪丽菊  陶凌云  柏熊  胡建华  高诚  谢建云 《遗传》2011,33(9):989-995
根据生物素与链霉亲和素的亲和原理, 利用磁珠富集法筛选东方田鼠(Microtus fortis)微卫星分子标记。链霉亲和素磁珠捕获生物素标记的微卫星探针, 然后与连有接头的单链限制性酶切片段复性结合, 获得含有微卫星的单链片段, PCR扩增形成双链, 连接T载体并转化感受态细胞, 得到东方田鼠微卫星富集文库。随机挑选70个阳性克隆, 经测序分析, 获得微卫星序列92个。设计合成27对微卫星引物并成功筛选出21对可用引物, 取其中10对引物, 荧光标记后对3个人工驯养及野生东方田鼠种群进行遗传多样性分析。结果显示, 文章所构建的东方田鼠微卫星文库的阳性克隆率较高, 初步筛选的10个微卫星标记均为具有高度多态性的微卫星标记。在3个东方田鼠种群中, 野生湖南种群的观测等位基因数(Na)、有效等位基因数(Ne)、观测杂合度(Ho)、期望杂合度(He)和多态信息含量(PIC)均最高, 人工驯养的湖南种群次之, 人工驯养的宁夏种群最低。  相似文献   

10.
核酸适配体是利用配体指数富集的系统进化技术(SELEX)从随机文库中筛选获得一段有功能的单链寡核苷酸。但因筛选过程中的文库选择、洗涤次数、分离效率、缓冲液离子含量和pH值等多种因素的影响,迄今所报道的亲和力与特异性都很高的核酸适配体为数不多。初始文库是核酸适配体筛选的源头,作为SELEX技术的根本,其设计是否合理直接影响到筛选的成败和效率。分子模拟能以核酸适配体文库为主体,计算机为主要工具,发展多种结构模拟与分析工具,辅助核酸适配体文库的合理设计。本文综述了现阶段利用分子模拟进行核酸适配体初始文库设计的相关方法,希望能为从源头上提高核酸适配体筛选的成功率提供线索。  相似文献   

11.
When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.  相似文献   

12.
Analyses of interactions of the Escherichia coli replicative helicase, PriA protein, with a single-stranded (ss) DNA have been performed, using the quantitative fluorescence titration technique. The stoichiometry of the PriA helicase.ssDNA complex has been examined in binding experiments with a series of ssDNA oligomers. The total site-size of the PriA.ssDNA complex, i.e. the maximum number of nucleotide residues occluded by the PriA helicase in the complex, is 20 +/- 3 residues per protein monomer. However, the protein can efficiently form a complex with a minimum of 8 nucleotides. Thus, the enzyme has a strong ssDNA-binding site that engages in direct interactions with a significantly smaller number of nucleotides than the total site-size. The ssDNA-binding site is located in the center of the enzyme molecule, with the protein matrix protruding over a distance of approximately 6 nucleotides on both sides of the binding site. The analysis of the binding of two PriA molecules to long oligomers was performed using statistical thermodynamic models that take into account the overlap of potential binding sites, cooperative interactions, and the protein.ssDNA complexes with different stoichiometries. The intrinsic affinity depends little upon the length of the ssDNA. Moreover, the binding is accompanied by weak cooperative interactions.  相似文献   

13.
DNA-dependent protein kinase (DNA-PK) is a DNA end-activated protein kinase composed of a catalytic subunit, DNA-PKcs, and a DNA binding subunit, Ku, that is involved in repair of DNA double-stranded breaks (DSBs). We have previously shown that DNA-PKcs interacts with single-stranded DNA (ssDNA) ends with a separate ssDNA binding site to be activated for its kinase activity. Here, the properties of the ssDNA binding site were examined by using DNA fragments with modified ssDNA extensions. DNA fragments with a wide range of ssDNA modifictations activated DNA-PKcs, indicating a relaxed specificity for the chemical structure of terminal nucleotides of a DSB. Methyl substitution of the phosphate backbone impaired kinase activation but not binding, indicating that interaction with the DNA backbone was involved in kinase activation. Experiments with RNA and RNA/DNA hybrid fragments suggested that the discrimination between RNA and DNA ends resides in the double-stranded DNA binding function of DNA-PKcs. DNA fragments exposing only one ssDNA end activated DNA-PKcs poorly, suggesting that DNA-PKcs distinguishes between DSBs and ssDNA breaks by simultaneous interaction with two ssDNA ends. These properties potentially explain how DNA-PKcs can be specifically activated by DSBs but still recognize the diverse chemical structures exposed when DSBs are introduced by ionizing radiation.  相似文献   

14.
Aptamers represent auspicious ligands for recognition of target molecules on the surface of a specific cell population, such as stem or cancer cells. These ligands are able to capture and enrich desired cells from a cell mixture, and can be used for identification of new biomarkers, development of cell-specific therapeutics, and stem cell therapy. In this study, we investigated the influence of dead cells on single-stranded DNA (ssDNA) binding and established a method to eliminate dead cells from a cell suspension. Flow cytometry analyses demonstrated that all dead cells were stained with fluorescein-labeled ssDNA molecules. The increasing of the proportion of dead cells led to an increased number of cells that were positive for ssDNA staining. Using dead cell removal microbeads, the proportion of dead cells was significantly reduced. The studies demonstrated that dead cells lead to unspecific uptake/binding of ssDNA molecules during cell-Systematic Evolution of Ligands by Exponential enrichment (SELEX) and can cause failure of the selection process. Thus, the elimination of dead cell population before incubation with ssDNA molecules will reduce the loss of target binding sequences and the contamination of the enriched aptamer pool with unspecific ssDNA molecules caused by unspecific binding to dead cells.  相似文献   

15.
Helicase from hepatitis C virus,energetics of DNA binding   总被引:9,自引:0,他引:9  
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The global analysis of the binding data by a combinatorial approach was done using MATLAB. NS3h interactions with single-stranded DNA (ssDNA) are 300-1000-fold tighter relative to duplex DNA. The NS3h protein binds to ssDNA less than 15 nt in length with a stoichiometry of one protein per DNA. The minimal ssDNA binding site of NS3h helicase was determined to be 8 nucleotides with the microscopic K(d) of 2-4 nm or an observed free energy of -50 kJ/mol. These NS3h-DNA interactions are highly sensitive to salt, and the K(d) increases 4 times when the NaCl concentration is doubled. Multiple HCV helicase proteins bind to ssDNA >15 nucleotides in length, with an apparent occluded site of 8-11 nucleotides. The DNA binding data indicate that the interactions of multiple NS3h protein molecules with long ssDNA are both noncooperative and sequence-independent. We discuss the DNA binding properties of HCV helicase in relation to other superfamily 1 and 2 helicases. These studies provide the basis to investigate the DNA binding interactions with the unwinding substrate and their modulation by the ATPase activity of HCV helicase.  相似文献   

16.
L D Harris  J D Griffith 《Biochemistry》1988,27(18):6954-6959
The UvsX protein of T4 bacteriophage will catalyze the formation of D loops between linear single-stranded DNA (ssDNA) and homologous supercoiled double-stranded DNA (dsDNA) in the absence of T4 gene 32 protein (gp32). This reaction requires one monomer of UvsX protein per three nucleotides of ssDNA so that the ssDNA is completely covered with UvsX protein. Under these conditions, high rates of ATP hydrolysis are observed, and one-third of the products are joined paranemically. The reaction proceeds through a mechanism that creates homology-independent coaggregates of UvsX protein, dsDNA, and ssDNA. When UvsX protein is added to only 1 monomer per 8 nucleotides, but with 1 monomer of gp32 per 12 nucleotides, the rate of ATP hydrolysis is depressed, but D-loop formation is enhanced. Nearly all of the product is bound in plectonemic joints, and no coaggregated intermediates are formed. Coaggregate formation at high concentrations of UvsX protein is not inhibited by the presence of gp32; gp32 simply allows for efficient formation of D loops at such low concentrations of UvsX protein that coaggregates are not constructed. Electron microscopic visualization of the joint structures in this reaction reveals that both gp32 and UvsX protein are bound to the ssDNA. The single-stranded DNA binding (SSB) protein of Escherichia coli will substitute only partially for gp32: in the presence of SSB protein, D-loop formation can be catalyzed at one UvsX protein monomer per eight nucleotides, and it is accomplished without the formation of coaggregates, but a major portion of the product is joined paranemically.  相似文献   

17.
Human replication protein A (hRPA) is an essential single-stranded-DNA-binding protein that stimulates the activities of multiple DNA replication and repair proteins through physical interaction. To understand DNA binding and its role in hRPA heterologous interaction, we examined the physical structure of hRPA complexes with single-stranded DNA (ssDNA) by scanning transmission electron microscopy. Recent biochemical studies have shown that hRPA combines with ssDNA in at least two binding modes: by interacting with 8 to 10 nucleotides (hRPA8nt) and with 30 nucleotides (hRPA30nt). We find the relatively unstable hRPA8nt complex to be notably compact with many contacts between hRPA molecules. In contrast, on similar lengths of ssDNA, hRPA30nt complexes align along the DNA and make few intermolecular contacts. Surprisingly, the elongated hRPA30nt complex exists in either a contracted or an extended form that depends on ssDNA length. Therefore, homologous-protein interaction and available ssDNA length both contribute to the physical changes that occur in hRPA when it binds ssDNA. We used activated DNA-dependent protein kinase as a biochemical probe to detect alterations in conformation and demonstrated that formation of the extended hRPA30nt complex correlates with increased phosphorylation of the hRPA 29-kDa subunit. Our results indicate that hRPA binds ssDNA in a multistep pathway, inducing new hRPA alignments and conformations that can modulate the functional interaction of other factors with hRPA.  相似文献   

18.
Surface protein hemagglutinin (HA) mediates the binding of influenza virus to host cell receptors containing sialic acid, facilitating the entry of the virus into host cells. Therefore, the HA protein is regarded as a suitable target for the development of influenza virus detection devices. In this study, we isolated single-stranded DNA (ssDNA) aptamers binding to the HA1 subunit of subtype H1 (H1-HA1), but not to the HA1 subunit of subtype H5 (H5-HA1), using a counter-systematic evolution of ligands by exponential enrichment (counter-SELEX) procedure. Enzyme-linked immunosorbent assay and surface plasmon resonance studies showed that the selected aptamers bind tightly to H1-HA1 with dissociation constants in the nanomolar range. Western blot analysis demonstrated that the aptamers were binding to H1-HA1 in a concentration-dependent manner, yet were not binding to H5-HA1. Interestingly, the selected aptamers contained G-rich sequences in the central random nucleotides region. Further biophysical analysis showed that the G-rich sequences formed a G-quadruplex structure, which is a distinctive structure compared to the starting ssDNA library. Using flow cytometry analysis, we found that the aptamers did not bind to the receptor-binding site of H1-HA1. These results indicate that the selected aptamers that distinguish H1-HA1 from H5-HA1 can be developed as unique probes for the detection of the H1 subtype of influenza virus.  相似文献   

19.
Kumaran S  Kozlov AG  Lohman TM 《Biochemistry》2006,45(39):11958-11973
We have examined the single-stranded DNA (ssDNA) binding properties of the Saccharomyces cerevisiae replication protein A (scRPA) using fluorescence titrations, isothermal titration calorimetry, and sedimentation equilibrium to determine whether scRPA can bind to ssDNA in multiple binding modes. We measured the occluded site size for scRPA binding poly(dT), as well as the stoichiometry, equilibrium binding constants, and binding enthalpy of scRPA-(dT)L complexes as a function of the oligodeoxynucleotide length, L. Sedimentation equilibrium studies show that scRPA is a stable heterotrimer over the range of [NaCl] examined (0.02-1.5 M). However, the occluded site size, n, undergoes a salt-dependent transition between values of n = 18-20 nucleotides at low [NaCl] and values of n = 26-28 nucleotides at high [NaCl], with a transition midpoint near 0.36 M NaCl (25.0 degrees C, pH 8.1). Measurements of the stoichiometry of scRPA-(dT)L complexes also show a [NaCl]-dependent change in stoichiometry consistent with the observed change in the occluded site size. Measurements of the deltaH(obsd) for scRPA binding to (dT)L at 1.5 M NaCl yield a contact site size of 28 nucleotides, similar to the occluded site size determined at this [NaCl]. Altogether, these data support a model in which scRPA can bind to ssDNA in at least two binding modes, a low site size mode (n = 18 +/- 1 nucleotides), stabilized at low [NaCl], in which only three of its oligonucleotide/oligosaccharide binding folds (OB-folds) are used, and a higher site size mode (n = 27 +/- 1 nucleotides), stabilized at higher [NaCl], which uses four of its OB-folds. No evidence for highly cooperative binding of scRPA to ssDNA was found under any conditions examined. Thus, scRPA shows some behavior similar to that of the E. coli SSB homotetramer, which also shows binding mode transitions, but some significant differences also exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号