首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glacio-marine fjords occur widely at high latitudes and have been extensively studied in the Arctic, where heavy meltwater inputs and sedimentation yield low benthic faunal abundance and biodiversity in inner-middle fjords. Fjord benthic ecosystems remain poorly studied in the subpolar Antarctic, including those in extensive fjords along the West Antarctic Peninsula (WAP). Here we test ecosystem predictions from Arctic fjords on three subpolar, glacio-marine fjords along the WAP. With seafloor photographic surveys we evaluate benthic megafaunal abundance, community structure, and species diversity, as well as the abundance of demersal nekton and macroalgal detritus, in soft-sediment basins of Andvord, Flandres and Barilari Bays at depths of 436–725 m. We then contrast these fjord sites with three open shelf stations of similar depths. Contrary to Arctic predictions, WAP fjord basins exhibited 3 to 38-fold greater benthic megafaunal abundance than the open shelf, and local species diversity and trophic complexity remained high from outer to inner fjord basins. Furthermore, WAP fjords contained distinct species composition, substantially contributing to beta and gamma diversity at 400–700 m depths along the WAP. The abundance of demersal nekton and macroalgal detritus was also substantially higher in WAP fjords compared to the open shelf. We conclude that WAP fjords are important hotspots of benthic abundance and biodiversity as a consequence of weak meltwater influences, low sedimentation disturbance, and high, varied food inputs. We postulate that WAP fjords differ markedly from their Arctic counterparts because they are in earlier stages of climate warming, and that rapid warming along the WAP will increase meltwater and sediment inputs, deleteriously impacting these biodiversity hotspots. Because WAP fjords also provide important habitat and foraging areas for Antarctic krill and baleen whales, there is an urgent need to develop better understanding of the structure, dynamics and climate-sensitivity of WAP subpolar fjord ecosystems.  相似文献   

2.
Late Glacial and Holocene environmental changes were reconstructed using physical, chemical and biological proxies in Lake Myklevatnet, Allmenningen, (5º13′17″E, 61º55′13″N) located at the northern side of Nordfjorden at the coast of western Norway. Myklevatnet (123 m a.s.l.) lies above the Late Glacial marine limit and contains sediments back to approximately 14,300 years before a.d. 2000 (b2k). Because the lake is located ~48 km beyond the margin of the Younger Dryas (YD) fjord and valley glaciers further inland, and did not receive glacier meltwater from local glaciers during the YD, the lake record provides supplementary information to Lake Kråkenes that received glacial meltwater from a local YD glacier. Lake Myklevatnet has a small catchment and is sensitive to Late Glacial and Holocene climate and environmental changes in the coastal region of western Norway. The age-depth relationship was inferred from a radiocarbon- and tephra-based smoothing-spline model with correlated ages from oxygen isotope maxima and minima in the Late Glacial sequence of the NGRIP ice core (in years b2k) to refine the basal chronology in the Myklevatnet record. The results indicate a two-step YD warming, colder early YD temperatures than in the later part of the YD, and considerably more climate and environmental variability during the late Holocene in western Norway than recorded previously in the oxygen isotopes from Greenland ice cores. The Myklevatnet record is also compared with other Late Glacial and Holocene terrestrial and marine proxy reconstructions in the North Atlantic realm.  相似文献   

3.
As a consequence of ongoing climate warming, nearly all tidal glaciers in Arctic are retreating; hence, the seascape of glacial fjords is changing in many aspects. We took the example of Hornsund, the well-studied Svalbard fjord, with over 30 years of almost continuous observations of marine system. Recent data were collected during summer oceanographic surveys between 2001 and 2013 and compared with archival data from 1980s. As most of the phenomena connected with the warming happen at the sea surface (ice, wind, waves, surface currents, brackish water), we were interested, how the presumably stable, near-bottom waters in fjords behave, what are the environmental changes that are experienced directly by the worms living in the sediment. We have found that both the inner fjord basins (usually regarded as stable) and the outer fjord parts (exposed to the direct influence of shelf waters) has changed. Warming was documented in the inner basins, while cooling and warming episodes were recorded in the outer parts of the fjord. We demonstrate that following the increase melting and retreat of the glaciers, the area of shallows increased, salinity decreased and temperature increased—partly due to the advection of Atlantic waters from the shelf. Observed changes are in accordance with the model of arctic fjords evolution towards boreal ones associated with increased organic matter turnover. The observed changes are most likely typical for all cold water, glaciated fjords that are exposed to climate warming.  相似文献   

4.
Detailed studies on sub-Arctic and Arctic marine diatom assemblages contribute to the understanding of spatial distribution patterns and their physical drivers. In this study, diatom species were analyzed from water samples collected with a Niskin bottle rosette combined with a CTD along the West Greenland coast (63°58′N–71°08′N and 50°49′W–59°06′W) during summer 2007. Diatom community was represented mainly by three genera Thalassiosira, Fragilariopsis, and Chaetoceros and linked to observed hydrographic and environmental conditions. Thalassiosira spp. were common in coastal waters (particularly Godthåbsfjord) and linked to increased surface water temperature, typical of summer water stratification in West Greenland. Fragilariopsis spp., along with other dominant species associated with higher geographic latitudes, dominated in Arctic fjords (Uummannaq Fjord-Qaumarujuk Fjord). These species generally characterized coastal waters influenced by melting sea ice and/or glacial ice. Chaetoceros spp. were linked to more saline open marine waters, particularly in the Davis Strait south of 70°N, probably corresponding to weaker water stratification and the influence of the West Greenland Current. The present paper provides new knowledge on diatom assemblages along a south–north climate gradient in West Greenland, which is necessary in order to understand how observed ocean-climate changes influence Arctic marine ecosystems. This study provides a reference for palaeoenvironmental reconstructions using diatom microfossils deposited in the West Greenland marine sediments.  相似文献   

5.
Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 104 cells mL?1 and we estimate that ~1.02 × 1021 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river‐transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world.  相似文献   

6.
Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems.  相似文献   

7.
8.
Coastal ocean upwelling ecosystems generally represent the most productive large marine ecosystems of the world's oceans, in terms of both primary production rates and tonnages of exploitable fish produced. The Peruvian upwelling system, in particular, stands out as a major factor in world fish production. The Pacific trade winds have traditionally been considered to be the primary driving force for the upwelling system off Peru, but are projected to weaken as climate change proceeds. This leads to concern that the upwelling process in the Peru system, to which its productivity is linked, may likewise weaken. However, other mechanisms involving greenhouse‐associated intensification of thermal low‐pressure cells over the coastal landmasses of upwelling regions suggest general intensification of wind‐driven ocean upwelling in coastal upwelling regions of the world's oceans. But although certain empirical results have supported this expectation, it has not been consistently corroborated in climate model simulations, possibly because the scale of the coastal intensification may be small relative to the scales that are appropriately reflected in the standard models. Here we summarize available evidence for the intensification mechanism and present a proxy test that uses variations in water vapor, the dominant natural greenhouse gas, to offer multiple‐realization empirical evidence for action of the proposed mechanism in the real world situation. While many potential consequences to the future of marine ecosystems would codepend on climate change‐related changes in the thermocline and nutricline structures, an important subset, involving potential increased propensities for hypoxia, noxious gas eruptions, toxic red tide blooms, and/or jellyfish outbreaks, may depend more directly on changes in the upwelling‐favorable wind itself. A prospective role of fisheries in either mitigating or reinforcing this particular class of effects is suggested.  相似文献   

9.
Krossfjorden and Kongsfjorden are Arctic fjords on the western side of Spitsbergen. These fjords share a common mouth to the open sea, and both are influenced by the input of sediment-rich glacial meltwater leading to decreased surface salinity, increased turbidity and decreased light penetration during summer. Earlier classical taxonomic studies had described the pelagic protistan composition of the Kongsfjorden during summer, revealing the dominance of flagellates of often unresolved taxonomic origin. Only little information existed on microbial eukaryote composition of the Krossfjorden as well as the bacterial composition of both fjords. The aim of the present study was to analyze and compare surface summertime protistan and bacterial communities in both fjords, using molecular approaches (16S and 18S rRNA DGGE, sequencing). Samples were collected three times a week from the central Kongsfjorden over a 1-month period. Additionally, 10 marine and 2 freshwater sites were sampled within a 1-week period in both Kongsfjorden and Krossfjorden. The central Kongsfjorden revealed a relatively stable protistan community over time with dinoflagellates, chlorophytes and small heterotrophs dominating. In contrast, the bacterial community varied over time and appeared to be correlated with the inflow of glacial meltwater. The Kongsfjorden and Krossfjorden were found to harbor distinctive bacterial and eukaryotic communities. We speculate that differences in glacial meltwater composition and fjord bathymetry affect the surface water properties and therefore the observed spatial variability in the community fingerprints.  相似文献   

10.
The southwest Greenland coast is made up of large and deep sill fjords. On the shelf, a number of shallow banks separated by deep troughs are located 20–50 km from the coast. We collected three 0.1-m2 van Veen grabs at nine stations along a transect spanning from the inner Godthaabsfjord influenced by glaciers, across the shallow Fyllas Bank and out to the slope of the continental shelf at approximately 1,000 m depth. Along this transect, we explored patterns of macrobenthic diversity, species composition, abundance and biomass. The sampled stations were very different in terms of environmental variables, resulting in large differences in species composition primarily related to differences in depth, silt–clay fraction and chl a content of the sediment (BIO-ENV analysis). Habitat differences also reduced species spatial ranges and the majority of species were found at only one (49%) or two (20%) stations and, consequently, species turnover or beta diversity was high and correlated to differences in depth, silt–clay fraction and median sediment grain size. Species richness and diversity were lowest in sites exposed to sediment disturbance: near the glaciers in the inner fjord (physical disturbance by mineral sedimentation) and at selected stations on the shelf (bioturbation by burrowing sand eel). Alpha diversity and richness were only weakly correlated to environmental parameters, indicating that alpha richness and diversity are influenced by several factors or that relationships are non-linear as was found for species richness and silt–clay fraction.  相似文献   

11.
We provide an overview of the physical oceanographic and geological processes that affect marine biological habitats and production in the marine waters throughout the archipelago and continental shelf of Southeast Alaska. Given the paucity of regional data, our overview summarizes work done in adjacent regions of the Gulf of Alaska shelf and basin, and draws on research carried out in similar settings elsewhere. The geological setting, which critically influences the regional meteorology and oceanography, includes a narrow continental shelf, deep channels that permeate the archipelago, fjords, glaciers and a rugged, mountainous coast. The large-scale meteorology is influenced primarily by seasonal variations in the intensity and position of the Aleutian Low. Winds, freshwater runoff, tides and cross-shelf exchange control the regional oceanography. The large-scale flow field advects mass, heat, salt, nutrients and planktonic organisms northward from British Columbia (and even further south) to the northern Gulf of Alaska along the slope, shelf, and within the channels of Southeast Alaska. The deep channels permeating the island archipelago and narrow continental shelf facilitate communication between basin and interior waters. Water properties and flow fields are subject to large annual variations in response to similarly large variations in winds and coastal freshwater discharge. The complex geological setting leads to large spatial heterogeneity in the physical processes controlling the local circulation fields and mixing, thereby creating numerous and diverse marine biological habitats. These various circulation and mixing processes modify substantially Southeast Alaska water masses and thus influence marine ecosystem processes downstream over the northern and western Gulf of Alaska shelf.  相似文献   

12.
13.
The purpose of this investigation is to encourage a fresh look at Pleistocene Beringia. Heretofore, flooding of Bering Strait has been cited as the only barrier to migration, with marine sea transgressions being a “sea gate” that closed off migration during glacial interstadials and interglaciations. However, the possibility exists that glacial advances were also barriers, with marine ice transgressions being an “ice gate” that closed off migration during glacial stadials and glacial maxima. This possibility proceeds from the Marine Ice Transgression Hypothesis (MITH), which states that marine ice sheets form on the broad Arctic continental shelf of Northern Hemisphere continents when sea ice thickens, grounds and domes in shallow water, and then transgresses landward as continental ice sheets and seaward as floating ice shelves (Hughes, 1987). Landward transgression is onto coastal lowlands. During Pleistocene glaciations, a marine ice sheeet extending from Spitsbergen to Greenland may have transgressed the circumpolar continental landmass at its lowest and narrowest gap, central Beringia, and calved into the Pacific Ocean.

Four models of Beringian glaciation are presented, based on the distinction between marine glaciation and highland glaciation. Central Beringia was glaciated only in highlands in the traditional model (Hopkins et al., 1982), was also glaciated by a self-sustaining ice shelf floating over the deep ocean basins of the Bering Sea in the model by Grosswald and Vozovik (1984), was glaciated by a marine ice sheet that covered highlands, the continental shelf, and supplied the ice shelf in a model for maximum Pleistocene glaciation, and was glaciated by a marine ice sheet in the Chukchi Sea that merged with highland glaciers, transgressed the continental shelf of the western Bering Sea, and calved into the southern Bering Sea along the edge of the continental shelf in a model for the last glaciation. Field tests are suggested to assess the viability of these four models. The first model is already established for highland glaciation in Alaska, but less established in Siberia. The last model should be the easiest to evaluate for marine glaciation. The last model limits human migration across the Beringian land bridge to brief intervals between stadials and interstadials of the last glaciation cycle, when both the ice gate and the sea gate were opened to human migration. This model can influence the sea change now underway among Quaternary scientists studying peopling of the Americas, based on the archaeological, linguistic and ethnic diversity among native American populations.  相似文献   


14.
Rising atmospheric CO2 is intensifying climate change but it is also driving global and particularly polar greening. However, most blue carbon sinks (that held by marine organisms) are shrinking, which is important as these are hotspots of genuine carbon sequestration. Polar blue carbon increases with losses of marine ice over high latitude continental shelf areas. Marine ice (sea ice, ice shelf and glacier retreat) losses generate a valuable negative feedback on climate change. Blue carbon change with sea ice and ice shelf losses has been estimated, but not how blue carbon responds to glacier retreat along fjords. We derive a testable estimate of glacier retreat driven blue carbon gains by investigating three fjords in the West Antarctic Peninsula (WAP). We started by multiplying ~40 year mean glacier retreat rates by the number of retreating WAP fjords and their time of exposure. We multiplied this area by regional zoobenthic carbon means from existing datasets to suggest that WAP fjords generate 3,130 tonnes of new zoobenthic carbon per year (t zC/year) and sequester >780 t zC/year. We tested this by capture and analysis of 204 high resolution seabed images along emerging WAP fjords. Biota within these images were identified to density per 13 functional groups. Mean stored carbon per individual was assigned from literature values to give a stored zoobenthic Carbon per area, which was multiplied up by area of fjord exposed over time, which increased the estimate to 4,536 t zC/year. The purpose of this study was to establish a testable estimate of blue carbon change caused by glacier retreat along Antarctic fjords and thus to establish its relative importance compared to polar and other carbon sinks.  相似文献   

15.
Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation.  相似文献   

16.
Free-living nematodes and macrobenthos in a high-latitude glacial fjord   总被引:1,自引:0,他引:1  
Kongsfjord is an open glacial fjord on the west coast of Svalbard, where the influence of the West Spitzbergen current ameliorates the effects of high latitude (79°N). The fjord is heavily influenced by glacial discharges of meltwater, ice and till, and related environmental gradients in sediments from the glaciers to the open sea include sediment deposition, organic content and disturbance. Other factors, such as the formation and break up of sea ice, also affect benthic communities. In this study spatial patterns in nematode and macrofaunal communities, in samples collected using box-corers and van Veen grabs during a cruise in September 1997, are described, compared and contrasted. Non-parametric multivariate analyses demonstrate that there were clear differences in community structure between stations in both macrofaunal and nematode assemblages. At stations where macrofauna were sampled using both box-cores and grabs there were also significant differences between samples collected by different methods, although there is evidence that these were influenced in part by slight differences in sampling location. Some evidence of disturbance to macrofaunal assemblages in the centre of the fjord is apparent. Macrofaunal community composition varied most closely with a combination of depth and sediment C : N ratio, whereas that of nematodes varied most closely with C : N alone. Proportions of feeding groups of nematodes showed little variation along the fjord. There is no evidence of a specialised nematode assemblage inhabiting the part of the fjord subject to the heaviest deposition of sediment. The taxonomic distinctness of nematodes decreased with increasing distance from the source of disturbance. This is in contrast to studies showing that the taxonomic distinctness of nematodes tends to decrease with increasing anthropogenic stress.  相似文献   

17.
Worldwide, coastal systems provide some of the most productive habitats, which potentially influence a range of marine and terrestrial ecosystems through the transfer of nutrients and energy. Several reviews have examined aspects of connectivity within coastal seascapes, but the scope of those reviews has been limited to single systems or single vectors. We use the transfer of carbon to examine the processes of connectivity through multiple vectors in multiple ecosystems using four coastal seascapes as case studies. We discuss and compare the main vectors of carbon connecting different ecosystems, and then the natural and human‐induced factors that influence the magnitude of effect for those vectors on recipient systems. Vectors of carbon transfer can be grouped into two main categories: detrital particulate organic carbon (POC) and its associated dissolved organic and inorganic carbon (DOC/DIC) that are transported passively; and mobile consumers that transport carbon actively. High proportions of net primary production can be exported over meters to hundreds of kilometers from seagrass beds, algal reefs and mangroves as POC, with its export dependent on wind‐generated currents in the first two of these systems and tidal currents for the last. By contrast, saltmarshes export large quantities of DOC through tidal movement, while land run‐off plays a critical role in the transport of terrestrial POC and DOC into temperate fjords. Nekton actively transfers carbon across ecosystem boundaries through foraging movements, ontogenetic migrations, or ‘trophic relays’, into and out of seagrass beds, mangroves or saltmarshes. The magnitude of these vectors is influenced by: the hydrodynamics and geomorphology of the region; the characteristics of the carbon vector, such as their particle size and buoyancy; and for nekton, the extent and frequency of migrations between ecosystems. Through a risk‐assessment process, we have identified the most significant human disturbances that affect the integrity of connectivity among ecosystems. Loss of habitat, net primary production (NPP) and overfishing pose the greatest risks to carbon transfer in temperate saltmarsh and tropical estuaries, particularly through their effects on nekton abundance and movement. In comparison, habitat/NPP loss and climate change are likely to be the major risks to carbon transfer in temperate fjords and temperate open coasts through alteration in the amount of POC and/or DOC/DIC being transported. While we have highlighted the importance of these vectors in coastal seascapes, there is limited quantitative data on the effects of these vectors on recipient systems. It is only through quantifying those subsidies that we can effectively incorporate complex interactions into the management of the marine environment and its resources.  相似文献   

18.
Chan  F.  Menge  B. A.  Nielsen  K.  & Lubchenco  J. 《Journal of phycology》2003,39(S1):8-9
Net primary production in marine ecosystems ultimately reflects the inputs of nutrients and the efficiency with which nutrients are acquired and used by phytoplankton in growth. In contrast to our understanding of the linkages between nutrient loading and production, the influence of nutrient use efficiency (NUE) on cross-system variations in coastal productivity remains unclear. Nutrient use efficiency at the ecosystem scale is the product of the per capita efficiency of nutrient use in phytoplankton growth and the efficiency with which phytoplankton communities are able to assimilate limiting nutrient(s). We measured the relative dominance of ecosystem N pools by phytoplankton biomass as an index of NUE across 56 inner-shelf sites. These sites were distributed across a strong geographic range of upwelling intensity and productivity along the coasts of Oregon, California and New Zealand. We also compiled an extensive dataset of published NUE values in coastal and oceanic sites in order to assess cross-system patterns and differences in NUE. Our results indicate that exceptional rates of productivity in inner-shelf upwelling systems arise as a consequence of near dominance of ecosystem N pools by phytoplankton biomass. Elevated rates of NUE nevertheless appear to be a transient phenomenon in marine systems. Cross-shelf transects across upwelling fronts off the Oregon coast reveal a temporal pattern of intense phytoplankton blooms and decline that reflects the eventual dominance of ecosystems N pools by detrital and dissolved organic N pools. Our findings suggest that NUE may play a central role in governing the productivity of marine ecosystems.  相似文献   

19.
This synthesis focuses on the estuarine and ocean ecology of Atlantic salmon (Salmo salar) and steelhead (Oncorhynchus mykiss) across their southern ranges in North America. General life history and ecology share many common traits including iteroparity, duration of freshwater (0–3 years) and marine (2–5 years) rearing, ocean emigration at relatively large sizes and strong surface orientation compared to other salmonids. Despite parallels in life history and anthropogenic pressures, several differences emerged for these species. First, steelhead have greater life history diversity and a broader geographic distribution. Generally, estuary habitats serve as short-term migration corridors for both species. However, some steelhead populations used lagoon habitat in south-coast watersheds. While both species are epipelagic, Atlantic salmon exhibit more vertical migration. Atlantic salmon tend to follow migratory highways—relatively narrow bands along the coastal shelf, then crossing the Atlantic to feed inshore and in fjords of West Greenland. Conversely, steelhead exit the coastal shelf quickly, dispersing across the Pacific, and rarely use coastal environments. Despite inhabiting rivers in warm dry Mediterranean climates, the extended range and stability of southern steelhead distribution is likely buffered by cool upwelled waters of the California Current. Whereas Atlantic salmon populations are restricted by warmer Northwest Atlantic circulation patterns lacking cool upwelling with greater susceptibility to warming associated with climate change. Determining the rate of marine habitat changes in the Atlantic and Pacific Oceans is important to the conservation of these species, including subtleties of temporal and spatial habitat use, and adaptability to ocean ecosystems under climate change.  相似文献   

20.
The marine ecosystem of Kongsfjorden experiences large variations in primary productivity due to pronounced seasonal variations in sunlight, glacier melt, and ice cover. The objective of this study was to assess spatial and seasonal variability in the downward export of biogenic matter in Kongsfjorden. Short-term sediment traps were deployed for periods ranging from 21 to 52 h at three stations from the inner fjord to the outer fjord in May, August, and October 2012 and at one mid-fjord station in January 2013. Total particulate matter, particulate organic carbon, phytoplankton cells, chlorophyll a, biogenic particulate silica, and zooplankton fecal pellet fluxes were measured to determine the magnitude and composition of the material exported in the fjord. The amount and composition of export fluxes reflected a large phytoplankton bloom grazed upon by zooplankton in May, the melting of glaciers and the intrusion of Atlantic Water in August, the end of the glacier melt period in October, and the polar night in January. Overall, seasonal changes in the phytoplankton community impacted export efficiency in the fjord, directly through phytoplankton sinking and indirectly through zooplankton grazing. Results obtained in this study may reflect the magnitude and composition of export fluxes to expect in coming years in Kongsfjorden, especially under conditions of warmer Atlantic Water and longer glacier melt periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号