首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of saturated fatty acids in the liver can cause nonalcoholic fatty liver disease (NAFLD). This study investigated saturated fatty acid induction of endoplasmic reticulum (ER) stress and apoptosis in human liver cells and the underlying causal mechanism. Human liver L02 and HepG2 cell lines were exposed to the saturated fatty acid sodium palmitate. MTT assay was used for cell viability, flow cytometry and Hoechst 33258 staining for apoptosis, RT-PCR for mRNA expression, and Western blot for protein expression. Silence of PRK-like ER kinase (PERK) expression in liver cells was through transient transfection of PERK shRNA. Treatment of L02 and HepG2 cells with sodium palmitate reduced cell viability through induction of apoptosis. Sodium palmitate also induced ER stress in the cells, indicated by upregulation of PERK phosphorylation and expression of BiP, ATF4, and CHOP proteins. Sodium palmitate had little effect on activating XBP-1, a common target of the other two canonical sensors of ER stress, ATF6, and IRE1. Knockdown of PERK gene expression suppressed the PERK/ATF4/CHOP signaling pathway during sodium palmitate-induced ER stress and significantly inhibited sodium palmitate-induced apoptosis in L02 and HepG2 cells. Saturated fatty acid-induced ER stress and apoptosis in these human liver cells were enacted through the PERK/ATF4/CHOP signaling pathway. Future study is warranted to investigate the role of these proteins in mediating saturated fatty acid-induced NAFLD in animal models.  相似文献   

2.
In the present study, we investigated the role of PKR-like endoplasmic reticular kinase (PERK), an endoplasmic reticulum (ER) stress kinase, in endothelin 1 (ET-1)- and thrombin-induced pulmonary fibrosis (PF), and the preventive effects of curcumin (CUR). Using the human embryonic WI-38 lung fibroblast cell line, ET-1 and thrombin induced the expression of ER stress-related proteins (CCAAT-enhancer-binding protein homologous protein, PERK, and binding immunoglobulin protein), a profibrogenic factor (cellular communication network factor 2 [CCN2]), and differentiation markers including α-smooth muscle actin (α-SMA), collagen I (Col I), and Col IV. Knockdown of PERK expression via small interfering RNA (siRNA) significantly reduced the increases in CCN2, α-SMA, Col I, and Col IV proteins in WI-38 cells according to western blot analysis and immunohistochemistry (IHC). Activation of c-Jun N-terminal kinase (JNK) was observed in ET-1- and thrombin-treated WI-38 cells, and the addition of a JNK inhibitor (SP) suppressed the induction of the indicated proteins by ET-1 and thrombin. Thapsigargin (TG), an ER stress inducer, elevated expressions of PERK and ER stress-related proteins with increased differentiation of WI-38 cells. Knockdown of PERK by siRNA or the PERK inhibitor glycogen synthesis kinase reduced expressions of the differentiation markers, α-SMA and Col IV, in WI-38 cells. CUR concentration-dependently inhibited ET-1- or thrombin-induced CCN2, α-SMA, and vimentin proteins with decreased levels of phosphorylated mitogen-activated protein kinase and PERK in WI-38 cells. An in vivo bleomycin-induced PF study showed that an intraperitoneal injection of CUR (30 mg/kg) reduced expressions of α-SMA, CCN2, Col IV, and vimentin in lung tissues via IHC staining using specific antibodies. This study is the first to demonstrate that PERK activation contributes to pulmonary fibroblast differentiation elicited by ET-1 or thrombin, and the inhibitory activity of CUR against PF is demonstrated herein.  相似文献   

3.
4.
Spleen tyrosine kinase (Syk) is a non-receptor protein kinase present in abundance in a wide range of hematopoietic cells. Syk reportedly plays a crucial role in immune signaling in B cells and cells bearing Fcγ-activation receptors. The role of syk in osteoblastic differentiation has not been well elucidated. We report herein the role of syk in osteoblastic differentiation. We investigated the effects of two syk inhibitors on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. Expression of syk was detected in these two cell lines. Two syk inhibitors stimulated mRNA expression of osteoblastic markers (ALP, Runx2, Osterix). Mineralization of extracellular matrix was also promoted by treatment with syk inhibitors. Knockdown of Syk caused increased mRNA expression of osteoblastic markers. In addition, syk inhibitor and knockdown of Syk suppressed phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase Cα (PKCα). Our results indicate that syk might regulate osteoblastic differentiation through MAPK and PKCα.  相似文献   

5.
6.
7.
8.
9.
The unfolded protein response (UPR) regulates the protein-folding capacity of the endoplasmic reticulum (ER) according to cellular demand. In mammalian cells, three ER transmembrane components, IRE1, PERK, and ATF6, initiate distinct UPR signaling branches. We show that these UPR components display distinct sensitivities toward different forms of ER stress. ER stress induced by ER Ca2+ release in particular revealed fundamental differences in the properties of UPR signaling branches. Compared with the rapid response of both IRE1 and PERK to ER stress induced by thapsigargin, an ER Ca2+ ATPase inhibitor, the response of ATF6 was markedly delayed. These studies are the first side-by-side comparisons of UPR signaling branch activation and reveal intrinsic features of UPR stress sensor activation in response to alternate forms of ER stress. As such, they provide initial groundwork toward understanding how ER stress sensors can confer different responses and how optimal UPR responses are achieved in physiological settings.  相似文献   

10.
11.
12.
Cigarette smoke (CS) generally places severe stress on cells, as reflected by gene expression profiling and pathway analysis, which, among other effects, also suggested activation of the unfolded protein response pathway triggered by the stressed endoplasmic reticulum (ER stress). Here, we present data indicating that noncytotoxic concentrations of aqueous extracts of CS induce a distinct ER stress response in immortalized nontransformed Swiss 3T3 cells, primarily by activating the PERK pathway of global protein synthesis inhibition. Activation of PERK and PERK-dependent signaling by aqueous extracts of CS was demonstrated by (i) the inhibition of protein synthesis, (ii) the phosphorylation of PERK and its substrate eIF2alpha, (iii) the activation of ATF4, and (iv) the expression of ATF4-dependent target genes chop, gadd34, BiP, and atf3. Within the dose range tested, all effects appeared to be transient in nature, while the periods of recovery from ER stress were clearly concentration dependent. In contrast to these data and to the effects seen with thapsigargin (used as positive control), only minor effects were observed for the activation of xbp-1, a common target of the other two canonical sensors of ER stress, i.e., ATF6 and IRE1. In mechanistic terms, neither the disruption of energy levels nor a contribution of arylating quinones played a major role under the experimental conditions tested. Notably however, the effects of aqueous extracts of CS on the ER could be mimicked in the presence of acrolein at CS-relevant concentrations, indicating that CS interferes with proper ER function, presumably due mainly to changes in cellular redox homeostasis. Since ER stress has been linked to diseases that are also related to CS exposure, these data are relevant in the discussion of a general molecular mechanism of CS-induced disease.  相似文献   

13.
Type 1 diabetes mellitus is known to be associated with reduced bone mass and increased bone fractures. This is thought to be due to a decrease in osteoblastic bone formation rather than an increase in osteoclastic bone resorption, but the precise mechanism is unknown. In this study, we examined whether or not high glucose or advanced glycation end-products (AGEs), which play key roles in the pathogenesis and complications of diabetes, affect the differentiation of osteoblastic MC3T3-E1 cells. First, MC3T3-E1 cells were incubated in media containing either 22 mM glucose, 22 mM mannitol, 300 microg/ml AGE2, or 300 microg/ml AGE3. Each of these agents alone did not affect the mineralization of the cells by von Kossa staining and Alizarin red staining. However, high glucose but not mannitol or AGEs markedly increased mRNA expression of AGE receptor (RAGE) by real-time PCR. Next, we examined the combined effects of high glucose and AGEs on the differentiation of MC3T3-E1 cells. The combination of 22 mM glucose and 300 microg/ml AGE2 significantly inhibited the mineralization of MC3T3-E1 cells, and 22 mM glucose in combination with either 300 microg/ml AGE2 or AGE3 apparently decreased osteocalcin mRNA expression. These results suggest that high glucose or AGEs alone might have no effect on osteoblastic differentiation, but their combination could additionally or synergistically inhibit osteoblastic mineralization through glucose-induced increase in RAGE expression.  相似文献   

14.
15.
Although microRNAs (miRNAs) are involved in many biological processes, the mechanisms whereby miRNAs regulate osteoblastic differentiation are poorly understood. Here, we found that BMP-4-induced osteoblastic differentiation of bone marrow-derived ST2 stromal cells was promoted and repressed after transfection of sense and antisense miR-210, respectively. A reporter assay demonstrated that the activin A receptor type 1B (AcvR1b) gene was a target for miR-210. Furthermore, inhibition of transforming growth factor-β (TGF-β)/activin signaling in ST2 cells with SB431542 promoted osteoblastic differentiation. We conclude that miR-210 acts as a positive regulator of osteoblastic differentiation by inhibiting the TGF-β/activin signaling pathway through inhibition of AcvR1b.  相似文献   

16.
17.
18.
Lee ES  Yoon CH  Kim YS  Bae YS 《FEBS letters》2007,581(22):4325-4332
Sustained ER stress leads to apoptosis. However, the exact mechanism still remains to be elucidated. Here, we demonstrate that the double strand RNA-dependent protein kinase (PKR) is involved in the ER stress-mediated signaling pathway. ER stress rapidly activated PKR, inducing the phosphorylation of eIF2alpha, followed by the activation of the ATF4/CHOP pathway. ER-stress-mediated eIF2alpha/ATF4/CHOP signaling and associated cell death was markedly reduced by PKR knockdown. We also found that PKR activation was mediated by PACT, the expression of which was elevated by ER-stress. These results indicate that the ER-stress-mediated eIF2alpha/ATF4/CHOP/cell death pathway is, to some degree, dependent on PACT-mediated PKR activation apart from the PERK pathway.  相似文献   

19.
Vitamin D deficiency and advanced glycation end products (AGEs) are suggested to be involved in the pathogenesis of osteoporosis and sarcopenia. However, the effects of vitamin D and AGEs on myogenesis and the interaction between muscle and bone remains still unclear. We previously showed that osteoglycin (OGN) is secreted from myoblasts and stimulates osteoblastic differentiation, suggesting that it plays important roles in the interaction between muscle and bone. The aim of this study is thus to examine the effects of vitamin D and AGEs on myoblastic differentiation of C2C12 cells and osteoblastic differentiation of osteoblastic MC3T3-E1 cells through OGN expression. 1α,25-dihydroxyvitamin D3 (1,25D) and eldecalcitol, an active vitamin D analog, induced the expression of MyoD, myogenin and OGN, and these effects were abolished by vitamin D receptor (VDR) suppression by siRNA in C2C12 cells. Moreover, conditioned medium from 1,25D-pretreated C2C12 cells stimulated the expression of type 1 collagen and alkaline phosphatase in MC3T3-E1 cells, compared to control medium from 1,25D-untreated C2C12 cells. In contrast, conditioned medium from VDR-suppressed and 1,25D-pretreated C2C12 cells showed no effects. AGE2 and AGE3 suppressed the expression of MyoD, myogenin and OGN in C2C12 cells. Moreover, 1,25D blunted the AGEs’ effects. In conclusion, these findings showed for the first time that active vitamin D plays important roles in myogenesis and muscle-induced osteoblastogenesis through OGN expression. Active vitamin D treatment may rescue the AGEs-induced sarcopenia as well as – suppressed osteoblastic differentiation via OGN expression in myoblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号