首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve our understanding of the genetic links between strains originating from food and strains responsible for human diseases, we studied the genetic diversity and population structure of 130 epidemiologically unrelated Listeria monocytogenes strains. Strains were isolated from different sources and ecosystems in which the bacterium is commonly found. We used rRNA gene restriction fragment length polymorphism analysis with two endonucleases and random multiprimer DNA analysis with seven oligonucleotide primers to study multiple genetic features of each strain. We used three clustering methods to identify genetic links between individual strains and to determine the precise genetic structure of the population. The combined results confirmed that L. monocytogenes strains can be divided into two major phylogenetic divisions. The method used allowed us to demonstrate that the genetic structure and diversity of the two phylogenetic divisions differ. Division I is the most homogeneous and can easily be divided into subgroups with dissimilarity distances of less than 0.30. Each of these subgroups mainly, or exclusively, contains a single serotype (1/2b, 4b, 3b, or 4a). The serotype 4a lineage appears to form a branch that is highly divergent from the phylogenetic group containing serotypes 1/2b, 4b, and 3b. Division II contains strains of serotypes 1/2a, 1/2c, and 3a. It exhibits more genetic diversity with no peculiar clustering. The fact that division II is more heterogeneous than division I suggests that division II evolved from a common ancestor earlier than division I. A significant association was found between division I and human strains, suggesting that strains from division I are better adapted to human hosts.  相似文献   

2.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

3.
The alternative sigma factor sigB gene is involved in the stress response regulation of Listeria monocytogenes, and contributes towards growth and survival in adverse conditions. This gene was examined to determine if it could be a useful indicator of lineage differentiation, similar to the established method based on ribotyping. The sigB sequence was resolved in four local L. monocytogenes strains and the phylogenetic relationship among these, and a further 21 sigB gene sequences from strains of different serotype and lineage including two Listeria innocua strains, obtained from the GenBank database were determined. The sigB nucleotide sequences of these 25 Listeria strains were then examined for single nucleotide polymorphic (SNP) sites that could differentiate between the three lineages. Based on nucleotide sequences L. monocytogenes lineage I/serotype 1/2b and 4b clustered together, lineage II/serotype 1/2a and 1/2c strains clustered together, lineage III/serotypes 4a and 4c strains clustered together and L. innocua strains clustered together as an outgroup. SNPs differentiating the three lineages were identified. Individual allele-specific PCR reactions based on these polymorphisms were successful in grouping known and a further 37 local L. monocytogenes isolates into the three lineages.  相似文献   

4.
Clamped homogeneous electric field (CHEF) electrophoresis was optimized for genomic analyses of Listeria monocytogenes. Various human, animal, food, and environmental isolates, as well as strains representing other Listeria species, were separately digested with rarely cutting endonucleases. Of 176 L. monocytogenes strains analyzed, the enzymes AscI and ApaI established 63 and 72 unique restriction endonuclease digestion profiles (REDP), respectively. The 22 non-L. monocytogenes strains exhibited 18 AscI and 19 ApaI unique REDP. Statistical analyses of REDP information using the Dice coincidence index and principal component analysis revealed two distinct genomic divisions of L. monocytogenes that also correlated with the flagellar (H) antigen type: division I contained serovar 1/2a, 1/2c, 3a, and 3c stains and division II contained serovar 1/2b, 3b, 4b, 4d, and 4e strains. Division I isolates digested with ApaI were further grouped into cluster IA (serovar 1/2c and 3c) and cluster IB (serovar 1/2a and 3a) strains. Likewise, division II isolates digested with ApaI were further grouped into cluster IIA (serovar 1/2b and 3b) and cluster IIB (serovar 4b, 4d, and 4e) strains. These data indicate that genotypic data generated by CHEF can be directly related to phenotypic data generated by serotyping for establishing the overall relatedness of isolates. Moreover, these data further substantiate that CHEF analysis is a reproducible and highly discriminating method for characterizing L. monocytogenes strains at the molecular level.  相似文献   

5.
Thirteen different serotypes of Listeria monocytogenes can be distinguished on the basis of variation in somatic and flagellar antigens. Although the known virulence genes are present in all serotypes, greater than 90% of human cases of listeriosis are caused by serotypes 1/2a, 1/2b, and 4b and nearly all outbreaks of food-borne listeriosis have been caused by serotype 4b strains. Phylogenetic analysis of these three common clinical serotypes places them into two different lineages, with serotypes 1/2b and 4b belonging to lineage I and 1/2a belonging to lineage II. To begin examining evolution of the genome in these serotypes, DNA microarray analysis was used to identify lineage-specific and serotype-specific differences in genome content. A set of 44 strains representing serotypes 1/2a, 1/2b, and 4b was probed with a shotgun DNA microarray constructed from the serotype 1/2a strain 10403s. Clones spanning 47 different genes in 16 different contiguous segments relative to the lineage II 1/2a genome were found to be absent in all lineage I strains tested (serotype 4b and 1/2b) and an additional nine were altered exclusively in 4b strains. Southern hybridization confirmed that conserved alterations were, in all but two loci, due to absence of the segments from the genome. Genes within these contiguous segments comprise five functional categories, including genes involved in synthesis of cell surface molecules and regulation of virulence gene expression. Phylogenetic reconstruction and examination of compositional bias in the regions of difference are consistent with a model in which the ancestor of the two lineages had the 1/2 somatic serotype and the regions absent in the lineage I genome arose by loss of ancestral sequences.  相似文献   

6.
Listeria monocytogenes can be isolated from a range of food products and may cause food-borne outbreaks or sporadic cases of listeriosis. L. monocytogenes is divided into three genetic lineages and 13 serotypes. Strains of three serotypes (1/2a, 1/2b, and 4b) are associated with most human cases of listeriosis. Of these, strains of serotypes 1/2b and 4b belong to lineage 1, whereas strains of serotype 1/2a and many other strains isolated from foods belong to lineage 2. L. monocytogenes is isolated from foods by selective enrichment procedures and from patients by nonselective methods. The aim of the present study was to investigate if the selective enrichment procedure results in a true representation of the subtypes of L. monocytogenes present in a sample. Eight L. monocytogenes strains (four lineage 1 strains and four lineage 2 strains) and one Listeria innocua strain grew with identical growth rates in the nonselective medium brain heart infusion (BHI), but differed in their growth rate in the selective medium University of Vermont medium I (UVM I). When coinoculated in UVM I, some strains completely outgrew other strains. This outcome was dependent on the lineage of L. monocytogenes rather than the individual growth rate of the strains. When inoculated at identical cell densities in UVM I, L. innocua outcompeted L. monocytogenes lineage 1 strains but not lineage 2 strains. In addition, lineage 2 L. monocytogenes strains outcompeted lineage 1 L. monocytogenes strains in all combinations tested, indicating a bias in strains selected by the enrichment procedures. Bias also occurred when coinoculating two lineage 2 or lineage 1 strains; however, it did not appear to correlate with origin (clinical versus food). Identical coinoculation experiments in BHI suggested that the selective compounds in UVM I and II influenced this bias. The results of the present study demonstrate that the selective procedures used for isolation of L. monocytogenes may not allow a true representation of the types present in foods. Our results could have a significant impact on epidemiological studies, as lineage 1 strains, which are often isolated from clinical cases of listeriosis, may be suppressed during enrichment by other L. monocytogenes lineages present in a food sample.  相似文献   

7.
Variants that lacked reactivity with the serotype 4b-specific monoclonal antibody c74.22 and that lost susceptibility to certain Listeria- or serotype 4b-specific phages were identified in the course of genetic studies with serotype 4b Listeria monocytogenes strains H7550 and F2381L (epidemic clones I and II, respectively). Our findings suggest that such variants can become inadvertently established under laboratory conditions and suggest caution in work involving serotype 4b strains and genetic constructs thereof.  相似文献   

8.
Thirty isolates of Listeria monocytogenes and 18 of L. innocua obtained from different short-ripened cheeses manufactured in Asturias (northern Spain), were compared with each other and with reference strains using serotype, phage type and pulsed-field restriction endonuclease digestion profiles analysis of the total DNA. Restriction enzymes Apa I and Sma I defined five clusters in L. monocytogenes ( m1 to m5 ) and two main clusters in L. innocua ( i1 and i2 ). Cluster i2 was further arranged into three subclusters ( i2a , i2b and i2c ) based on the different Eco 52I ( Xma III) and Crf 42I ( Sac II) patterns of its isolates. Clusters of L. innocua were clearly different whereas those of L. monocytogenes were more closely related to each other. In this latter species, serotype 4b isolates ( m4 and m5 ) constituted a more homogeneous group than serogroup 1 isolates ( m1 , m2 and m3 ). Cluster m3 contained two strains of serotype 1/2a whereas m1 and m2 harboured strains of both serotypes, 1/2a and 1/2b. Therefore, the combined use of restriction patterns and serotype may be useful to differentiate L. monocytogenes strains showing identical restriction profiles but differing in serotype. The cheese source of Listeria strains proved that isolates from cluster m1 were repeatedly detected as a contaminant in the same type of cheese. Comparison of L. monocytogenes Apa I profiles showed a genetic proximity of m4 and m5 to the recognized pathogenic strains ATCC 13932 and NCTC 11994, responsible for meningitis cases in other countries. Finally, bacteriophage typing data indicated that m4 , the sole phage typable group, had a phage type resembling that of strains causing the Auckland (New Zealand) outbreak of listeriosis in 1969. These data suggest a wide distribution of closely related types which might cause, under several circumstances, sporadic cases of listeriosis.  相似文献   

9.
10.
Listeria monocytogenes of serotype 4b has been implicated in numerous outbreaks of food-borne listeriosis and in ca. 40% of sporadic cases. Strains of this serotype appear to be relatively homogeneous genetically, and molecular markers specific for distinct serotype 4b lineages have not been frequently identified. Here we show that DNA fragments derived from the putative mannitol permease locus of Listeria monocytogenes had an unexpectedly high potential to differentiate among different strains of serotype 4b when used as probes in Southern blotting of EcoRI-digested genomic DNA, yielding four distinct restriction fragment length polymorphism (RFLP) patterns. Strains of two epidemic-associated lineages, including the major epidemic clone implicated in several outbreaks in Europe and North America, had distinct RFLPs which differed from those of all other serotype 4b strains that we screened but which were encountered among strains of serotypes 1/2b and 3b. In addition, three serogroup 4 lineages were found to have unique RFLPs that were not encountered among any other L. monocytogenes strains. One was an unusual lineage of serotype 4b, and the other two were members of the serotype 4a and 4c group. The observed polymorphisms may reflect evolutionary relationships among lineages of L. monocytogenes and may facilitate detection and population genetic analysis of specific lineages.  相似文献   

11.
Thirteen different serotypes of the food-borne pathogen Listeria monocytogenes have been described. Serotype 4b strains are most often associated with illness, and serotype 1/2a strains are most often isolated from foods and processing plants. Different abilities to respond to stresses have been described for serotype 4b and 1/2a strains. One of the common enrichment protocols used to test foods for the presence L. monocytogenes is described in the U.S. Food and Drug Administration (FDA) Bacterial Analytical Manual (BAM). We compared three strains of L. monocytogenes serotype 4b and five strains of serotype 1/2a in direct competition with each other in two-strain mixed cultures by using the FDA BAM enrichment protocol, which includes both enrichment broth and selective agar, with and without added food to mimic the conditions that occur during attempts to isolate Listeria species from contaminated foods. Using a colony immunoblot procedure and analyzing over 112,000 colonies, we observed differences in strain fitness, but these differences were not attributable to serotype or genetic lineage.  相似文献   

12.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

13.
Listeria monocytogenes serotype 4b has frequently been implicated in sporadic as well as epidemic listeriosis. On the basis of pulsed-field fingerprinting, serotype 4b strains, along with strains of serotypes 4d and 4e, constitute one genomic cluster (IIB). We have identified two genomic regions essential for the expression of surface antigens which previously were shown to be specific to cluster IIB strains. A DNA probe of 1.1 kb derived from one of the regions (probe 1) hybridized only with strains of serotypes 4b, 4d, and 4e in Southern blots and dot blots. A different DNA probe of 0.3 kb (probe 2), derived from the other region, hybridized with all serovar 4 strains (serotypes 4b, 4a, 4c, 4d, and 4e). All other L. monocytogenes serotypes were negative with probe 1 or 2. Use of probe 1 in Southern blots of EcoRI-digested genomic DNA revealed a restriction fragment length polymorphism in serotype 4b strains, with the hybridizing EcoRI fragments being 4.5 kb (strains of the epidemic clone) and either 4.5 or 5.0 kb (all other serotype 4b strains). Although the probes hybridized with a special group of Listeria innocua strains which also expressed the surface antigens, the latter could be readily distinguished by the size of the hybridizing EcoRI fragment with probe 1 (ca. 2.2 kb). These data suggest that the combined use of these probes with L. monocytogenes can readily and specifically identify cluster IIB strains as well as the entire serovar 4 complex.  相似文献   

14.
The growth of Listeria monocytogenes in food stored in the cold has often been implicated in outbreaks of listeriosis. Many subtyping schemes have suggested that epidemic-associated strains belong to a unique genetic group. It has not yet been possible, however, to identify molecular or bacteriologic markers unique to epidemic-associated strains. Recently we cloned three genes of L. monocytogenes, ltrA, ltrB, and ltrC, which are essential for growth at low temperatures (4 degrees C). The use of a 1.2-kb PstI fragment derived from ltrB as a probe in Southern blots of HindIII-digested DNA revealed three hybridization patterns: the first (a 5.0-kb band) was observed in strains of serotypes 4b, 1/2b, and 3b; the second (a 3.1-kb band) was seen in strains of serotypes 1/2a, 3a, 1/2c, and 3c; and the third (a 9.5-kb band) was characteristic of epidemic-associated serotype 4b strains. These and other data suggest that probes derived from this gene region that is essential for growth at low temperatures can be useful molecular tools for the subtyping of strains implicated in food-borne listeriosis.  相似文献   

15.
Twenty-one isolates of Listeria monocytogenes from food animal clinical cases that involved meningitis or meningoencephalitis, encephalitis, mastitis and abortion were characterized by serotyping and pulsed-field gel electrophoresis (PFGE) in order to improve our understanding of the genetic links between individual strains and strains recovered from human listeriosis cases. Results showed that five of the isolates were serotype 1/2a, six were 1/2b, nine were 4b, and one was untypeable. A caprine, two bovine and an ovine brain isolate shared identical PFGE patterns indicating that strains of L. monocytogenes are not host specific. Other isolates exhibited distinct patterns that were not shared, indicating a genetic diversity. Dendrogram analysis revealed that PFGE patterns of the isolates clustered primarily according to serotype. We compared the PFGE types obtained for these isolates with PFGE types for human clinical isolates present in the CDC national PulseNet database. Six (29%) of the twenty-one strains had patterns that were indistinguishable from pathogenic human isolates in the database. Our observations offer preliminary evidence that food animals could be significant reservoirs of L. monocytogenes that lead to human infections and support the inclusion of PFGE patterns of veterinary clinical isolates in the national PulseNet database for increased surveillance.  相似文献   

16.
Listeria monocytogenes is the etiological agent of listeriosis, a severe food-borne illness. The population of L. monocytogenes is divided into four lineages (I to IV), and serotype 4b in lineage I has been involved in numerous outbreaks. Several serotype 4b epidemic-associated clonal groups (ECI, -II, and -Ia) have been identified. In this study, we characterized a panel of strains of serotype 4b that produced atypical results with a serotype-specific multiplex PCR and possessed the lmo0734 to lmo0739 gene cassette that had been thought to be specific to lineage II. The cassette was harbored in a genomically syntenic locus in these isolates and in lineage II strains. Three distinct clonal groups (groups 1 to 3) were identified among these isolates based on single-nucleotide polymorphism-based multilocus genotyping (MLGT) and DNA hybridization data. Groups 1 and 2 had MLGT haplotypes previously encountered among clinical isolates and were composed of clinical isolates from multiple states in the United States. In contrast, group 3 consisted of clinical and environmental isolates solely from North Carolina and exhibited a novel haplotype. In addition, all group 3 isolates had DNA that was resistant to MboI, suggesting methylation of adenines at GATC sites. Sequence analysis of the lmo0734 to lmo0739 gene cassette from two strains (group 1 and group 3) revealed that the genes were highly conserved (>99% identity). The data suggest relatively recent horizontal gene transfer from lineage II L. monocytogenes into L. monocytogenes serotype 4b and subsequent dissemination among at least three distinct clonal groups of L. monocytogenes serotype 4b, one of which exhibits restrictions in regional distribution.  相似文献   

17.
Conventional serotyping has traditionally been used to subtype Listeria monocytogenes, but has several limitations, including low discriminatory power and poor reproducibility. Molecular serotyping methods have been developed for L. monocytogenes, but generally show limited discriminatory power and high misclassification rates. We selected 157 Listeria isolates to evaluate a combination of a previously described multiplex PCR assay and sigB allelic typing as an alternative molecular serotyping and subtyping strategy for L. monocytogenes. While the multiplex PCR assay differentiated five L. monocytogenes subtypes (Simpson's Index of Discrimination [SID]=0.78), including classification of the most common disease-associated serotypes (1/2a, 1/2b, 1/2c, and lineage I 4b) into four distinct groups, it misclassified 3.8% of the isolates studied here. sigB allelic typing differentiated 29 subtypes (SID=0.87) and also allowed identification of lineage III L. monocytogenes, which could not be differentiated from the other Listeria spp. by the multiplex PCR assay. sigB allelic typing failed to differentiate serotype 1/2c and 1/2a isolates and one sigB allelic type included serotype 4b and 1/2b isolates. A molecular serotyping approach that combines multiplex PCR and sigB sequence data showed increased discriminatory power (SID=0.91) over either method alone as well as conventional serotyping (SID=0.87) and classifies the four major serotypes (i.e., 1/2a, 1/2b, 1/2c, and 4b) into unique subgroups with a lower misclassification rate as compared to the multiplex PCR assay. This combined approach also differentiates lineage I serotype 4b isolates from the genetically distinct serotype 4b isolates classified into lineage III.  相似文献   

18.
Listeria monocytogenes serotype 4b strains account for about 40% of sporadic cases and many epidemics of listeriosis. Mutations in a chromosomal locus resulted in loss of reactivity with all three monoclonal antibodies (MAbs) which were specific to serotype 4b and the closely related serotypes 4d and 4e. Here we show that this locus contains a serotype 4b-4d-4e-specific gene cassette (3,071 bp) which consists of two genes, gltA and gltB, and is flanked by palindromic sequences (51 and 44 nucleotides). Complete loss of reactivity with the three serotype-specific MAbs resulted from insertional inactivation of either gltA or gltB. The gltA and gltB mutants were characterized by loss and severe reduction, respectively, of glucose in the teichoic acid, whereas galactose, the other serotype-specific sugar substituent in the teichoic acid, was not affected. Within L. monocytogenes, only strains of serotypes 4b, 4d, and 4e harbored the gltA-gltB cassette, whereas coding sequences on either side of the cassette were conserved among all serotypes. Comparative genomic analysis of a serotype 1/2b strain showed that the 3,071-bp gltA-gltB cassette was replaced by a much shorter (528-bp) and unrelated region, flanked by inverted repeats similar to their counterparts in serotype 4b. These findings indicate that in the evolution of different serotypes of L. monocytogenes, this site in the genome has become occupied by serotype-specific sequences which, in the case of serotype 4b, are essential for expression of serotype-specific surface antigens and presence of glucose substituents in the teichoic acids in the cell wall.  相似文献   

19.
Listeria monocytogenes serotype 4b has been implicated in numerous food-borne epidemics and in a substantial fraction of sporadic listeriosis. A unique lineage of the nonpathogenic species Listeria innocua was found to express teichoic acid-associated surface antigens that were otherwise expressed only by L. monocytogenes of serotype 4b and the rare serotypes 4d and 4e. These L. innocua strains were also found to harbor sequences homologous to the gene gtcA, which has been shown to be essential for teichoic acid glycosylation in L. monocytogenes serotype 4b. Transposon mutagenesis and genetic studies revealed that the gtcA gene identified in this lineage of L. innocua was functional in serotype 4b-like glycosylation of the teichoic acids of these organisms. The genomic organization of the gtcA region was conserved between this lineage of L. innocua and L. monocytogenes serotype 4b. Our data are in agreement with the hypothesis that, in this lineage of L. innocua, gtcA was acquired by lateral transfer from L. monocytogenes serogroup 4. The high degree of nucleotide sequence conservation in the gtcA sequences suggests that such transfer was relatively recent. Transfer events of this type may alter the surface antigenic properties of L. innocua and may eventually lead to evolution of novel pathogenic lineages through additional acquisition of genes from virulent listeriae.  相似文献   

20.
Listeria monocytogenes is a model organism for cellular microbiology and host-pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号