首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims The expansion of shrublands is considered as one of the key reasons leading to the increase of carbon density in terrestrial ecosystems in China. In the present study, our aims were to explore the biomass allocation and carbon density of Sophora moorcroftiana shrublands in Xizang.
Methods We sampled the biomass of S. moorcroftiana shrubs from 18 sites in the middle reaches of Yarlung Zangbo River, Xizang. Using concentrations of different organs, we estimated the carbon density of different layers in S. moorcroftiana shrublands.
Important findings The plant cover rather than biomass volume (the product of cover and height) provided the best fit for aboveground biomass. The average of the total biomass was 5.71 Mg·hm-2, ranging from 2.32 to 8.96 Mg·hm-2. The average biomass of shrub layer, the main component of shrub ecosystem, was 4.08 Mg·hm-2, accounting for 71% of the total biomass. The belowground biomass of shrub and herb layers was 2.08 and 0.86 Mg·hm-2, respectively, which was higher than the corresponding aboveground biomass. The average biomass carbon density was 2.48 Mg·hm-2. Shrub vegetation in the eastern part of the middle reaches has lower carbon density than that in the western part. The relatively high biomass allocation to roots to increase water and nutrient undertake as well as physical support for plants is an important strategy of S. moorcroftiana to cope with the arid environment on the Qinghai-Xizang Plateau. Moreover, the lower carbon density in the eastern part of the middle reaches might be due to the dry environment resulted from high temperature and evapotranspiration and enhanced human activities at low altitudes. The continuous decrease of evapotranspiration under scenarios of future climate change may lead to increase in carbon density in S. moorcroftiana shrublands.  相似文献   

2.
《植物生态学报》2017,41(1):126
Aims Little is known about the stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in plateau shrubs across China. Sibiraea angustata is a typical and representative shrub species on the eastern Qinghai- Xizang Plateau, and exploring its C, N and P distribution patterns and stoichiometric properties in different organs (including root, shoot, leaf, twig and fruit) would help us better understand the mechanisms of C, N and P cycling and balance in the S. angustata dominated shrub ecosystem.
Methods Sixteen sampling sites were selected on the eastern Qinghai-Xizang Plateau by the stratified sampling method. The height and coverage of the dominant shrubs, latitude, longitude and altitude of the sites were recorded. Three 5 m × 5 m plots were selected at each site. At least 128 biological samples of plant organs of S. angustata were collected and measured, respectively. The C and N concentrations of plant samples were analyzed using an elemental analyzer (2400 II CHNS). The P concentration was analyzed using the molydate/ascorbic acid method after H2SO4-H2O2 digestion.
Important findings The C, N and P concentrations of different organs followed the order of: shoot (495.07 g·kg-1) > twig (483.37 g·kg-1) > fruit (480.35 g·kg-1) > root (468.47 g·kg-1) > leaf (466.33 g·kg-1); leaf (22.27 g·kg-1) > fruit (19.74 g·kg-1) > twig (7.98 g·kg-1) > shoot (4.54 g·kg-1) > root (4.00 g·kg-1) and fruit (2.85 g·kg-1) > leaf (1.92 g·kg-1) > twig (0.96 g·kg-1) > root (0.52 g·kg-1) > shoot (0.45 g·kg-1), respectively. The ranges of the coefficient of variation (CV) for C, N and P concentrations were 1.71%-4.44%, 14.49%-25.50% and 11.46%-46.15%, respectively. Specifically, the C concentration was relatively high and stable, and the maximum CV values for N and P were found in roots. The N:P value of different organs varied from 7.12-12.41 and the minimum CV for N:P was found in twig, which indicated that N:P in twig had higher internal stability. In addition, correlation analysis indicated that the C concentration was significantly negatively correlated with N and P concentrations and correlation coefficients were -0.407 and -0.342, respectively. However, N concentration had dramatically positive correlation with P concentration and the correlation coefficient was 0.814. These results also could indicate that the C, N and P stoichiometric characteristics in the S. angustata shrub accorded with the homeostatic mechanism and growth rate hypothesis to some extent, the distributions of C, N and P concentrations were closely related to the function of the organs and it should be prudent to use ecological stoichiometric ratios to judge the condition of nutrient limitation at the species level.  相似文献   

3.
Aims Understanding the changes in N and P concentration in plant organs along the environmental gradients can provide meaningful information to reveal the underline mechanisms for the geochemical cycles and adaptation strategies of plants to the changing environment. In this paper, we aimed to answer: (1) How did the N and P concentration in leaves of evergreen and deciduous woody plants change along the environmental gradients? (2) What were the main factors regulating the N and P concentration in leaves of woody plants in the shrublands across southern China?
Methods Using a stratified random sampling method, we sampled 193 dominant woody plants in 462 sites of 12 provinces in southern China. Leaf samples of dominant woody plants, including 91 evergreen and 102 deciduous shrubs, and soil samples at each site were collected. N and P concentration of the leaves and soils were measured after lapping and sieving. Kruskal-Wallis and Nemenyi tests were applied to quantify the difference among the organs and life-forms. For each life-form, the binary linear regression was used to estimate the relationships between leaf log [N] and log [P] concentration and mean annual air temperature (MAT), mean annual precipitation (MAP) and log soil total [N], [P]. The effects of climate, soil and plant life-form on leaf chemical traits were modeled through the general linear models (GLMs) and F-tests.
Important findings 1) The geometric means of leaf N and P concentrations of the dominant woody plants were 16.57 mg·g-1 and 1.02 mg·g-1, respectively. The N and P concentration in leaves (17.91 mg·g-1, 1.14 mg·g-1) of deciduous woody plants was higher than those of evergreen woody plants (15.19 mg·g-1, 0.89 mg·g-1). The dependent of leaf P concentration on environmental (climate and soil) appeared more variable than N concentration. 2) Leaf N and P in evergreen woody plants decreased with MAT and but increased with MAP, whereas those in deciduous woody plants showed opposite trends. With increase in MAP, leaf P concentration decreased for both evergreen and deciduous woody plants. 3) Soil N concentration had no significant effect on both evergreen and deciduous woody plants. However, leaf P concentration of the tow increased significantly with soil P concentration. (4) GLMs showed that plant growth form explained 7.6% and 14.4% of variation in leaf N and P, respectively. MAP and soil P concentration contributed 0.8% and 16.4% of the variation in leaf P, respectively. These results suggested that leaf N was mainly influenced by plant growth form, while leaf P concentration was driven by soil, plant life-form, and climate at our study sites.  相似文献   

4.
《植物生态学报》2017,41(7):738
Aims The objectives were to identify the age of the arboreous Tamarix austromongolica in the flood plain area of the Qinghai Plateau and clarify the response patterns of T. austromongolica’s growth to the environmental factors. We focused on social issues about whether the T. austromongolica should be protected and how to protect in the reservoir area of a hydropower station. Methods In this study, arboreous T. austromongolica in both reservoir submerged and non-submerged areas were sampled and measured based on the dendrochronology method. The ages were estimated based on the geometrical characteristics of the pith and the identified age of the inner ring. The correlation and response analysis showed the relationship between T. austromongolica’s growth and environmental factors. Important findings We accurately determined the age and historical growth dynamics of the T. austromongolica with large diameter at breast height (DBH). The results showed a special accretion phenomenon in arboreous T. austromongolica, which accelerated the DBH increasing, i.e. no direct relationship existed between the plants’ DBH and ages of the individuals. Radial growth of T. austromongolica, increased rapidly in the 1970s and 1980s and began to stabilize in the late 1980s, and mainly responded to the runoff in July and August of the Yellow River. Increasing runoff would promote the radial growth of T. austromongolica. The growth of the immaturate plant showed significant negative correlation with the wind speed in the growing season. The results will be of theoretical significance to the formation of the special morphology of the T. austromongolica, and will provide scientific practical guidance in designing the protection schemes.  相似文献   

5.
氮利用效率是植物的关键功能性状, 同时紧密关联生态系统功能, 但是目前对氮利用效率的区域格局及影响因素仍然不清楚。该研究分析了内蒙古和青藏高原草原82个调查地点、139种植物叶片和根系的氮利用效率及其与环境因素、植物功能群之间的关系, 实验结果显示: 1)草甸草原植物叶片的氮利用效率为53 g·g -1, 显著大于高寒草甸(46 g·g -1)、荒漠草原(41 g·g -1)和典型草原(39 g·g -1)。高寒草甸根系氮利用效率为108 g·g -1, 显著高于其他生态系统。2)叶片氮利用效率比根系对温度更加敏感, 但随着干旱指数的增加, 两者均表现出显著的降低趋势。3)杂类草叶片和根系氮利用效率低于莎草科和禾本科植物, 豆科植物叶片和根系氮利用效率分别比非豆科植物低48%和60%。4)植物氮利用效率与土壤氮含量之间没有显著关系。总体上, 内蒙古和青藏高原草原植物叶片和根系氮利用效率的空间格局存在差异, 主要影响因素为植物功能群和干旱指数。本研究系统揭示内蒙古和青藏高原草原植物氮利用效率的空间格局及关键驱动因子, 有助于在全球变化背景下了解我国草地生产力维持机制, 同时为草原生态系统管理提供科学依据。  相似文献   

6.
《植物生态学报》2017,41(4):461
Aims The objectives were to clarify the responses of C, N and P stoichiometry of Vitex rotundifolia to desertification, and determine the C, N and P stoichiometric relationships among the organs.
Methods In this study, different organs (e.g. flowers, leaves, twigs, creeping stems, fine roots) of V. rotundifolia were sampled along a desertification gradient in a typical Poyang Lak sandy hill. Subsequently, C, N and P contents of various organs were measured.
Important findings The results showed nutrient contents in different organs ranged from 386.28 to 449.47 mg·g-1 for carbon, 11.40 to 25.37 mg·g-1 for nitrogen and 0.89 to 1.54 mg·g-1 for phosphorus, respectively. C, N and P contents differed significantly among the five organs. The maximum N and P content were found in flowers, whereas the minimums were observed in twigs and creping stems. Moreover, desertification intensity only significantly affected C, N and C:P. C:N and N:P ratios maintained relatively stable. Except N:P, the other nutrient elements and associated stoichiometry significantly differed among the organs. Hence, organs, rather than desertification intensity mainly controlled the C, N and P content and their stoichiometry variability. Although there was a positive correlation between mass-based N content (Nmass) and P content (Pmass) across the three desertification zones, the Nmass-Pmass relationship in V. rotundifolia did not shift. Irrespective desertification intensity and organs, N:P stoichiometry of V. rotundifolia was well constrained. In addition, significant correlations of C, N and P contents among organs were mainly found in the above-ground parts, especially between twigs and creeping stems.  相似文献   

7.
《植物生态学报》2017,41(4):439
Aims The extensive use of herbicide to control invasive plants would change the relationship between alien and neighboring plants. In order to provide data for rational use of herbicide and a theoretical reference for further studies on the ecological effects of glyphosate, we explored the variation of the relationship between an invasive plant Solidago canadensis and a native plant Imperata cylindrica when they were sprayed glyphosate.
Methods A replacement series experiment was conducted from June to August 2016 in Wetland Ecosystem Research Station of Hangzhou Bay, State Forestry Administration, to examine the effects of glyphosate at seven concentration levels (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 mL·L-1) on the growth and interspecific competition of S. canadensis and I. cylindrica.
Important findings (1) Glyphosate treatment significantly inhibited the growth of S. canadensis and I. cylindrica (p < 0.05). During the test, cumulative growth of height and leaf number of S. canadensis were apparently reduced with the increase of glyphosate concentration, but the leaf number of S. canadensis treated with 0.3- 1.5 mL·L-1 glyphosate was re-growing with time, while the one treated with 1.8 mL·L-1 was mostly dead. The withering rate of tiller and green leaf of I. cylindrica also significantly increased with the increase of glyphosate concentration, and the growth indices of this plant treated with 0.3-0.6 mL·L-1 were also re-growing with time. (2) Glyphosate treatment significantly affected interspecific competition (p < 0.05), which diminished as the glyphosate concentration increased. (3) Interspecific competition has significant influence on the biomass allocation of S. canadensis (p < 0.05). When facing competition, S. canadensis would allocate more organic matter to root and thus increase the ratio of root to shoot. Competition only inhibited the tiller number and total biomass of I. cylindrica, but insignificantly affected its ratio of root to shoot. (4) The interaction between glyphosate treatment and S. canadensis-I. cylindrica interspecific relationship also significantly influenced the biomass of S. canadensis and I. cylindrica (p < 0.05), but insignificantly affected the root/shoot ratio of two plants. Different plants have different tolerance to glyphosate stress. Compared with native plant I. cylindrica, S. canadensis has stronger tolerance to glyphosate. Low-concentration glyphosate could decrease the competitive intensity between S. canadensis and I. cylindrica, which may disturb the structure and dynamics of plant communities.  相似文献   

8.
《植物生态学报》2016,40(4):374
Aims
Our objective was to explore the vegetation carbon storages and their variations in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau that includes Qinghai Province and Xizang Autonomous Region.
Methods
Based on forest resource inventory data and field sampling, this paper studied the carbon storage, its sequestration rate, and the potentials in the broad-leaved forests in the alpine region of the Qinghai-Xizang Plateau.
Important findings
The vegetation carbon storage in the broad-leaved forest accounted for 310.70 Tg in 2011, with the highest value in the broad-leaved mixed forest and the lowest in Populus forest among the six broad-leaved forests that include Quercus, Betula, Populus, other hard broad-leaved species, other soft broad-leaved species, and the broadleaved mixed forest. The carbon density of the broad-leaved forest was 89.04 Mg·hm-2, with the highest value in other hard broad-leaved species forest and the lowest in other soft broad-leaved species forest. The carbon storage and carbon density in different layers of the forests followed a sequence of overstory layer > understory layer > litter layer > grass layer > dead wood layer, which all increased with forest age. In addition, the carbon storage of broad-leaved forest increased from 304.26 Tg in 2001 to 310.70 Tg in 2011. The mean annual carbon sequestration and its rate were 0.64 Tg·a-1 and 0.19 Mg·hm-2·a-1, respectively. The maximum and minimum of the carbon sequestration rate were respectively found in other soft broad-leaved species forest and other hard broad-leaved species forest, with the highest value in the mature forest and the lowest in the young forest. Moreover, the carbon sequestration potential in the tree layer of broad-leaved forest reached 19.09 Mg·hm-2 in 2011, with the highest value found in Quercus forest and the lowest in Betula forest. The carbon storage increased gradually during three inventory periods, indicating that the broad-leaved forest was well protected to maintain a healthy growth by the forest protection project of Qinghai Province and Xizang Autonomous Region.  相似文献   

9.
Aims Soil respiration from terrestrial ecosystems is an important component of terrestrial carbon budgets. Compared to forests, natural or semi-natural shrublands are mostly distributed in nutrient-poor sites, and usually considered to be relatively vulnerable to environmental changes. Increased nitrogen (N) input to ecosystems may remarkably influence soil respiration in shrublands. So far the effects of N deposition on shrubland soil respiration are poorly understood. The aim of this study is to investigate the soil respiration of Vitex negundo var. heterophylla and Spiraea salicifolia shrublands and their response to N deposition. Methods We carried out a N enrichment experiment in V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, with four N addition levels (N0, control, 0; N1, low N, 20 kg N·hm-2·a-1; N2, medium N, 50 kg N·hm-2·a-1 and N3, high N, 100 kg N·hm-2·a-1). Respiration was measured from 2012-2013 within all treatments.Important findings Under natural conditions, annual total and heterotrophic respiration were 5.91 and 4.23, 5.76 and 3.53 t C·hm-2·a-1 for the V. negundo var. heterophylla and S. salicifolia shrublands, respectively and both were not affected by short-term N addition. In both shrubland types, soil respiration rate exhibited significant exponential relationships with soil temperature. Temperature sensitivity (Q10) of total soil respiration in V. negundo var. heterophylla and S. salicifolia shrublands ranged from 1.44 to 1.58 and 1.43 to 1.98, and Q10 of heterotrophic soil respiration ranged from 1.38 to 2.11 and 1.49 to 1.88, respectively. Short-term N addition decreased only autotrophic respiration rate during the growing season, but had no significant effects on total and heterotrophic soil respiration in V. negundo var. heterophylla shrubland. In contrast, N addition enhanced the heterotrophic soil respiration rate and did not influence autotrophic and total soil respiration in S. salicifolia shrubland.  相似文献   

10.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   

11.
《植物生态学报》2016,40(8):760
Aims Stoichiometric ratios of carbon (C), nitrogen (N) and phosphorus (P) are important characteristics of the ecological processes and functions. Studies on population ecological stoichiometry can refine the content of flora chemometrics, determine the limited nutrient, and provide data for process-based modeling over large scale. Phyllostachys edulis is an important forest type, whose area accounts for 74% of total bamboo forest area in Southern China. However, little is known about the ecological stoichiometric in P. edulis. This study aimed to reveal C:N, C:P and N:P stoichiometry characteristics of the “plant-soil-litter” continuum and to provide a better understanding nutrient cycling and stability mechanisms in P. edulis forest in China. Methods The data were collected from the published literature containing C、N、P content in leaf or surface soil (0-20 cm) or littefall in P. edulis forests. Important findings 1) The leaf C, N, P content were estimated at 478.30 mg·g-1, 22.20 mg·g-1, 1.90 mg·g-1 in P. edulis, and the corresponding C: N, C: P and N: P were 26.80, 299.60 and 14.40, respectively. Soil C, N, and P content in 0-20 cm were 21.53 mg·g-1, 1.66 mg·g-1, 0.41 mg·g-1, with ratios of 14.20 for C:N, 66.74 for C:P and 4.28 for N:P. The C, N and P contents were 438.49 mg·g-1, 13.39 mg·g-1, 0.86 mg·g-1 for litterfall, with the litter C:N, C:P and N:P being 25.53, 665.67, 22.55, respectively. 2) In the plant-soil-litter system in P. edulis forest, leaf had higher C:N, litter had higher C:P and N:P, while soil were the lowest. The N, P resorption rate was 39.68% and 54.74%, indicating that P. edulis forest growth and development was constrained by P or by both of N and P in China. 3) N content and N:P in leaf showed a tendency to increase with latitude, while the C:N of leaf declined with latitude. N:P of leaf increased with longitude, but the P content and the C:N of leaf showed a opposite trend. C: N of soil increased with longitude, whereas the N content of soil declined longitude. The N content of litter declined with longitude. 4) The leaf N content was negatively correlated with mean annual temperature and mean annual precipitation, but being more sensitive to temperature than precipitation. The positive correlations between N content and latitude support “Temperature-Plant Physiological” hypothesis, reflecting an adaptive strategy to environmental conditions.  相似文献   

12.
《植物生态学报》2017,41(2):196
Aims The increased atmospheric nitrogen (N) deposition due to human activity and climate change greatly causes grassland ecosystems shifting from being naturally N-limited to N-eutrophic or N-saturated, and further affecting the growth of grass species. The aims of this study are: 1) to evaluate the effects of different N addition levels on morphology and photosynthetic characteristics of Leymus chinensis; 2) to determine the critical N level to facilitate L. chinensis growth.
Methods We conducted a different N addition levels experiment in dominant species in the temperate steppe of Nei Mongol. The aboveground biomass, morphological and leaf physiological traits, pigment contents, chlorophyll a fluorescence parameters and biochemical parameters of L. chinensis were investigated.
Important findings Our results showed that aboveground biomass first increased and then decreased with the increased N, having the highest values at the 10 g N·m-2·a?1 treatment, but the 25 g N·m-2·a?1 still significantly increased the aboveground biomass relative to 0 g N·m-2·a?1. Leymus chinensis accommodate low N situation through allocating less N to carboxylation system and decreasing leaf mass per area (LMA) in order to get more light energy. Moderate N addition captured more light energy through increasing total chlorophyll (Chl) contents and decreasing the ratio of Chl a/b. Moderate N addition increased LMA, carboxylation efficiency, maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax) and decreased Jmax/Vcmax, thus allocating more N to carboxylation system to enhance carboxylation capability. Moreover, the photochemical activity of PSII was increased through higher effective quantum yield of PSII photochemistry, electron transport rate and photochemical quenching coefficient. Excessive N addition had negative effects on physiological variables of L. chinensis due to lower carboxylation capability and photochemical activity of PSII, further leading to decreased net photosynthetic rate, whereas increased non-photochemical quenching coefficient and carotenoids played the role in the dissipation of excess excitation energy. Overall, moderate N addition facilitated the photosynthetic characteristics of dominant species, but excessive N addition inhibited photosynthetic characteristics. The most appropriate N addition for the growth of L. chinensis was 5-10 g N·m-2·a?1 in the temperate steppe of Nei Mongol, China.  相似文献   

13.
《植物生态学报》2016,40(9):902
AimsThe Zoigê Plateau, as a very important wetland distribution region of China, was the major methane (CH4) emission center of the Qinghai-Xizang Plateau. The objective of this study is to study the effects of microtopographic changes on CH4 emission fluxes from five plots across three marshes in the littoral zone of the Zoigê Plateau wetland.
Methods CH4 emission fluxes were measured in five plots across three marshes in Zoigê Plateau wetland using the closed chamber method and Fast Greenhouse Gas Analyzer from May to October in 2014.
Important findings During the growing season, mean CH4 emission fluxes from the permanently flooded hollow (P-hollow) and hummock (P-hummock) in the Zoigê Plateau wetland were 68.48 and 40.32 mg·m-2·h-1, while mean CH4 emission fluxes from the seasonally flooded hollow (S-hollow) and hummock (S-hummock) were 2.38 and 0.63 mg·m-2·h-1. CH4 emission fluxes from non-flooded lawn was 3.68 mg·m-2·h-1. Mean CH4 emission fluxes from five plots across three sites was 23.10 mg·m-2·h-1, with a standard deviation of 30.28 mg·m-2·h-1 and the coefficient of variation was 131%. We also found that there was a significant and positive correlation between mean CH4 emission fluxes and mean water table depth in the five plots across three sites (R2 = 0.919, p < 0.01), indicating that water table depth was controlling the spatial variability of CH4 emission fluxes from the Zoigê Plateau wetland on microtopography. CH4 emission fluxes in the P-hollow, P-hummock, and S-hummock showed an obvious seasonal pattern, which was not observed in the lawn and S-hollow. However, CH4 emission peaks were observed in all the plots during summer and/or autumn, which could be closely related to the water table depth, soil temperature, and the magnitude of litter mass. In addition, we found that the CH4 emission flux in the P-hollow was much higher than the other four plots in the Zoigê Plateau wetland, suggesting that CH4 in the P-hollow could be often transported to the surface by ebullition and CH4 emission from the Zoigê Plateau wetland may be under estimated in the past.  相似文献   

14.
Aims Shrub recovery is recognized as an important cause of the increase of carbon stocks in China, and yet there are great uncertainties in the carbon sink capacities of shrubs. Our objectives were to estimate carbon density and its spatial distribution in alpine shrubs.
Methods Eight sites in Potentilla fruticosa dominated shrublands across Qinghai, China were investigated. Plant biomass and carbon content in leaves, branches and stems, and roots were measured to analyze the biomass allocation and carbon density.
Important findings Mean carbon densities in biological carbon, litter, soil and whole ecosystem of P. fruticosa shrublands were 5088.54, 542.1, 35903.76 and 41534.4 kg·hm-2, respectively. Carbon density in the shrub layer was more than 68% of the biological carbon density of the whole ecosystem and was mainly distributed in roots (49.5%-56.1%). Carbon density of the herbaceous layer was 22.5% of the biological carbon density of the whole ecosystem and was also mainly distributed in roots (59.6%-75.1%). The biological carbon density of P. fruticosa shrublands (5.08 t·hm-2) was lower than the average carbon density of shrub communities in China (10. 88 t·hm-2). Soil carbon density contributed the largest proportion (85.8%) of total carbon density in P. fruticosa shrublands.  相似文献   

15.
Aims Studying storage of carbon (C), nitrogen (N) and phosphorus (P) in ecosystems is of significance in understanding carbon and nutrient cycling. Previous researches in ecosystem C, N and P storage have biased towards forests and grasslands. Shrubland ecosystems encompass a wide gradient in precipitation and soil conditions, providing a unique opportunity to explore the patterns of ecosystem C, N and P storage in relation to climate and soil properties.
Methods We estimated densities and storage of organic C, N and P of shrubland ecosystems in Northern China based on data from 433 shrubland sites.
Important findings The main results are summarized as follows: the average organic C, N and P densities in temperate shrubland ecosystems across Northern China were 69.8 Mg·hm-2, 7.3 Mg·hm-2 and 4.2 Mg·hm-2, respectively. The average plant C, N and P densities were 5.1 Mg·hm-2, 11.5 × 10-2 Mg·hm-2 and 8.6 × 10-3 Mg·hm-2, respectively, and were significantly correlated with precipitation and soil nutrient concentrations. The average litter C, N and P densities were 1.4 Mg·hm-2, 3.8 ×10-2 Mg·hm-2, 2.5 ×10-3 Mg·hm-2 and were significantly correlated with temperature and precipitation. The average soil organic C, N and P densities in the top 1 m were 64.0 Mg·hm-2, 7.1 Mg·hm-2 and 4.2 Mg·hm-2, respectively and the former two were significantly correlated with temperature and precipitation. The total organic C, N and P storage of shrublands in Northern China were 1.7 Pg, 164.9 Tg and 124.8 Tg, respectively. The plant C, N and P storage were 128.4 Tg, 3.1 Tg and 0.2 Tg, respectively. The litter C, N and P storage were 8.4 Tg, 0.45 Tg, 0.027 Tg, respectively. Soil is the largest C, N and P pool in the studied area. The soil organic C, N and P storage in the top 1 meter were 1.6 Pg, 161.3 Tg and 124.6 Tg, respectively.  相似文献   

16.
Aims As the second largest C flux between the atmosphere and terrestrial ecosystems, soil respiration plays a vital role in regulating atmosphere CO2 concentration. Therefore, understanding the response of soil respiration to the increasing nitrogen deposition is urgently needed for prediction of future climate change. However, it is still unclear how nitrogen deposition influences soil respiration of shrubland in subtropical China. Our objectives were to explore the effects of different levels of nitrogen fertilization on soil respiration, root biomass increment, and litter biomass, and to analyze the relationships between soil respiration and soil temperature and moisture.
Methods From January 2013 to September 2014, we conducted a short-term simulated nitrogen deposition experiment in the Rhododendron simsii shrubland of Dawei Mountain, located in Hunan Province, southern China. Four levels of nitrogen addition treatments (each level with three replicates) were established: control (CK, no nitrogen addition), low nitrogen addition (LN, 2 g·m-2·a-1), medium nitrogen addition (MN, 5 g·m-2·a-1) and high nitrogen addition (HN, 10 g·m-2·a-1). Soil respiration was measured by LI-8100 soil CO2 efflux system. At the same time, we measured root biomass increment and litter biomass in each plot.
Important findings Soil respiration exhibited a strong seasonal pattern, with the highest rates found in summer and the lowest rates in winter. Annual accumulative soil respiration rate in the CK, LN, MN and HN was (2.37 ± 0.39), (2.79 ± 0.42), (2.26 ± 0.38) and (2.30 ± 0.36) kg CO2·m-2, respectively. Annual mean soil respiration rate in the CK, LN, MN and HN was (1.71 ± 0.28), (2.01 ± 0.30), (1.63 ± 0.27) and (1.66 ± 0.26) μmol CO2·m-2·s-1, respectively, and it was 17.25% higher in the LN treatment compared with CK (p = 0.06). The root biomass increment was increased by LN, MN, and HN treatments by 18.36%, 36.49% and 61.63%, respectively, compared to CK. The litter biomass was increased by LN, MN, and HN treatments by 35.87%, 22.17% and 15.35%, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature (p < 0.01, R2 is 0.77 to 0.82) and a significant linear relationship with soil moisture at the depth of 5 cm (p < 0.05, R2 is 0.10 to 0.15). The temperature sensitivity (Q10) value of CK, LN, MN and HN plots was 3.96, 3.60, 3.71 and 3.51, respectively. These results suggested that nitrogen addition promoted plant growth and decreased the temperature sensitivity of soil respiration. The increase of root biomass under N addition may be an important reason for the change of soil respiration in the study area.  相似文献   

17.
物种-多度格局研究是揭示群落组织结构和物种区域分布规律的重要手段。该研究以青藏高原东北部的甘南高寒草甸为研究对象, 基于野外调查和室内分析, 研究了不同坡向的环境因子、植物群落分布, 并利用RAD软件程序包对其进行了拟合分析。结果显示: 在南坡-北坡上, 土壤含水量从南坡(0.18 g·g -1)到北坡(0.31 g·g -1)呈现递增的趋势, 土壤温度从南坡(22.33 ℃)到北坡(18.13 ℃)以及光照强度从南坡(744.15 lx)到北坡(681.93 lx)均呈逐渐减小的趋势。物种-多度分布曲线的斜率从南坡向北坡依次减小。随着坡向由南向北转变, 物种-多度和物种多样性都呈递增的趋势。通过6个模型对坡向梯度的物种-多度分布进行拟合发现, 甘南高寒草甸区的物种-多度分布主要是以生态位模型为主, 其次是随机分布模型。青藏高原高寒草甸微生境梯度上的物种在总体上的资源分配模式是以固定分配模式为主, 稀有种的资源分配模式是以随机性模型为主, 常见种的资源分配模式则是以确定性模型为主。  相似文献   

18.
《植物生态学报》2017,41(4):489
Aims Elaeagnus angustifolia is one of the most salt-tolerant species. The objective of this study was to understand the mechanisms of ion transporation in E. angustifolia exposed to different salt concentrations through manipulations of K+/Na+ homeostasis.
Methods Seedlings of two variants of the species, Yinchuan provenance (YC, salt-sensitive type) and the Alaer provenance (ALE, salt-tolerant type), were treated with three different NaCl application modes, and the ion fluxes in the apical regions were measured using non-invasive micro-test technology (NMT). In mode 1, Na+ and K+ fluxes were measured after 150 mmol·L-1 NaCl stress lasted for 24 h. In mode 2, K+ and H+ fluxes were quantified with a transient stimulation of NaCl solution. In mode 3, Amiloride (Na+/H+ antiporters inhibitor) and tetraethylammonium (TEA, K+ channel inhibitor) was used to treat apical regions of E. angustifolia seedlings after NaCl stress for 24 h, respectively.
Important findings Under NaCl stress for 24 h, net effluxes of Na+ and K+ were increased significantly. The net Na+ effluxes of YC provenance seedlings (720 pmol·cm-2•s-1) were lower than that of ALE provenance (912 pmol·cm-2·s-1), but the net K+ efflux was higher in YC provenance. Under the instantaneous NaCl stimulation, net K+ efflux was remarkably increased, with the net K+ efflux of YC provenance always higher than that of ALE provenance. Interestingly, H+ at the apical regions was found from influx to efflux, with the net H+ efflux of ALE provenance greater than that of the YC provenance. Under the NaCl and NaCl + Amiloride treatment, the net Na+ efflux of ALE provenance seedlings was higher than that of YC provenance, while the net K+ efflux was less in ALE provenance seedlings. On the other hand, the differences in net Na+ and K+ effluxes were insignificant between the two provenances under the control group and NaCl + TEA treatment. In conclusion, NaCl stress caused Na+ accumulation and K+ outflows of E. angustifolia seedlings; The E. angustifolia seedlings utilize Na+/H+ antiporters to reduce Na+ accumulation by excretion; and the maintenance of K+/Na+ homeostasis in salt-tolerant E. angustifolia provenance seedlings roots accounted for a greater Na+ extrusion and a lower K+ efflux under NaCl stress. Results from this study provide a theoretical basis for further exploring salt-tolerant E. angustifolia germplasm resource.  相似文献   

19.
Aims As an important potential carbon sink, shrubland ecosystem plays a vital role in global carbon balance and climate regulation. Our objectives were to derive appropriate regression models for shrub biomass estimation, and to reveal the biomass allocation pattern and carbon density in Rhododendron simsii shrubland.
Methods We conducted investigations in 27 plots, and developed biomass regression models for shrub species to estimate shrub biomass. The biomass of herb and litterfall were obtained through harvesting. Plant samples were collected from each plot to measure carbon content in different organs.
Important findings The results showed that the power and linear models were the most appropriate equation forms. The D and D2H (where D was the basal diameter (cm) and H was the shrub height (m)) were good predictors for organ biomass and total biomass of shrubs. All of the biomass models reached extremely significant level, and could be used to estimate shrub biomass with high accuracy. It was more difficult to predict leaf and annual branch biomass than stem biomass, because leaf and annual branch were susceptible to herbivores and inter-plant competition. The mean biomass of the shrub layer was 20.78 Mg·hm-2, in which Rhododendron simsii and Symplocos paniculata biomass accounted for 93.63%. Influenced by both environment and species characteristics, the biomass of the shrub layer organs was in the order of stem > root > leaf > annual branch. The root:shoot ratio of the shrub layer was 0.32, which was less than other shrubs in subtropical regions. The relative higher aboveground biomass allocation reflected the adaptation of plants to the warm and humid environment for more photosynthesis. The mean total community biomass was 26.26 Mg·hm-2, in which shrub layer, herb layer and litter layer accounted for 79.14%, 7.62% and 13.25%, respectively. Litter biomass was relatively high, which suggested that this community had high nutrient return. There were significant correlations among aboveground biomass, belowground biomass and total biomass of shrub layer and herb layer. The mean biomass carbon density of the community was 11.70 Mg·hm-2 and the carbon content ratio was 44.55%. The carbon density was usually obtained using the conversion coefficient of 0.5 in previous studies, which could overestimate carbon density by 12.22%.  相似文献   

20.
《植物生态学报》2017,41(7):787
Aims This study aims to identify a more convenient drying method for obtaining molecular specimen of angiosperms in the field than the conventional silica gel drying method. Methods The leaves of Prunus serrulata var. lannesiana and Liriope spicata were dried under temperatures of 150 °C, 80 °C, 40 °C as well as under natural conditions, and by the silica gel drying method, respectively. The DNA extracts of various specimens were then analyzed using techniques of spectrophotometer detection, electrophoresis and PCR to evaluate the impacts of different drying treatments to the genomic DNA of testing plants. Important findings The concentrations of total DNA were higher for the specimens dried at 40 °C treatment and by the silica gel drying method than other treatments when assessed by the techniques of spectrophotometer detection and electrophoresis. The concentration of PCR products was highest in the specimens dried at 40 °C. Based on the results, the 40 °C drying can be recommended for obtaining molecular specimens of angiosperms because of its minimum degree of degradation, for convenience of operation and avoiding carrying large amounts of silica gel in field investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号