首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics bind specifically to the central region of the 16S rRNA A site and interfere with protein synthesis. Recently, we have shown that the binding of 2-DOS aminoglycosides to an A site model RNA oligonucleotide is linked to the protonation of drug amino groups. Here, we extend these studies to define the number of amino groups involved as well as their identities. Specifically, we use pH-dependent 15N NMR spectroscopy to determine the pK(a) values of the amino groups in neomycin B, paromomycin I, and lividomycin A sulfate, with the resulting pK(a) values ranging from 6.92 to 9.51. For each drug, the 3-amino group was associated with the lowest pK(a), with this value being 6.92 in neomycin B, 7.07 in paromomycin I, and 7.24 in lividomycin A. In addition, we use buffer-dependent isothermal titration calorimetry (ITC) to determine the number of protons linked to the complexation of the three drugs with the A site model RNA oligomer at pH 5.5, 8.8, or 9.0. At pH 5.5, the binding of the three drugs to the host RNA is independent of drug protonation effects. By contrast, at pH 9.0, the RNA binding of paromomycin I and neomycin B is coupled to the uptake of 3.25 and 3.80 protons, respectively, with the RNA binding of lividomycin A at pH 8.8 being coupled to the uptake of 3.25 protons. A comparison of these values with the protonation states of the drugs predicted by our NMR-derived pK(a) values allows us to identify the specific drug amino groups whose protonation is linked to complexation with the host RNA. These determinations reveal that the binding of lividomycin A to the host RNA is coupled to the protonation of all five of its amino groups, with the RNA binding of paromomycin I and neomycin B being linked to the protonation of four and at least five amino groups, respectively. For paromomycin I, the protonation reactions involve the 1-, 3-, 2'-, and 2"'-amino groups, while, for neomycin B, the binding-linked protonation reactions involve at least the 1-, 3-, 2', 6'-, and 2"'-amino groups. Our results clearly identify drug protonation reactions as important thermodynamic participants in the specific binding of 2-DOS aminoglycosides to the A site of 16S rRNA.  相似文献   

2.
Kaul M  Pilch DS 《Biochemistry》2002,41(24):7695-7706
We use spectroscopic and calorimetric techniques to characterize the binding of the aminoglycoside antibiotics neomycin, paromomycin, and ribostamycin to a RNA oligonucleotide that models the A-site of Escherichia coli 16S rRNA. Our results reveal the following significant features: (i) Aminoglycoside binding enhances the thermal stability of the A-site RNA duplex, with the extent of this thermal enhancement decreasing with increasing pH and/or Na(+) concentration. (ii) The RNA binding enthalpies of the aminoglycosides become more exothermic (favorable) with increasing pH, an observation consistent with binding-linked protonation of one or more drug amino groups. (iii) Isothermal titration calorimetry (ITC) studies conducted as a function of buffer reveal that aminoglycoside binding to the host RNA is linked to the uptake of protons, with the number of linked protons being dependent on pH. Specifically, increasing the pH results in a corresponding increase in the number of linked protons. (iv) ITC studies conducted at 25 and 37 degrees C reveal that aminoglycoside-RNA complexation is associated with a negative heat capacity change (Delta C(p)), the magnitude of which becomes greater with increasing pH. (v) The observed RNA binding affinities of the aminoglycosides decrease with increasing pH and/or Na(+) concentration. In addition, the thermodynamic forces underlying these RNA binding affinities also change as a function of pH. Specifically, with increasing pH, the enthalpic contribution to the observed RNA binding affinity increases, while the corresponding entropic contribution to binding decreases. (vi) The affinities of the aminoglycosides for the host RNA follow the hierarchy neomycin > paromomycin > ribostamycin. The enhanced affinity of neomycin relative to either paromomycin or ribostamycin is primarily, if not entirely, enthalpic in origin. (vii) The salt dependencies of the RNA binding affinities of neomycin and paromomycin are consistent with at least three drug NH(3)(+) groups participating in electrostatic interactions with the host RNA. In the aggregate, our results reveal the impact of specific alterations in aminoglycoside structure on the thermodynamics of binding to an A-site model RNA oligonucleotide. Such systematic comparative studies are critical first steps toward establishing the thermodynamic database required for enhancing our understanding of the molecular forces that dictate and control aminoglycoside recognition of RNA.  相似文献   

3.
A theoretical development in the evaluation of proton linkage in protein binding reactions by isothermal titration calorimetry (ITC) is presented. For a system in which binding is linked to protonation of an ionizable group on a protein, we show that by performing experiments as a function of pH in buffers with varying ionization enthalpy, one can determine the pK(a)'s of the group responsible for the proton linkage in the free and the liganded states, the protonation enthalpy for this group in these states, as well as the intrinsic energetics for ligand binding (delta H(o), delta S(o), and delta C(p)). Determination of intrinsic energetics in this fashion allows for comparison with energetics calculated empirically from structural information. It is shown that in addition to variation of the ligand binding constant with pH, the observed binding enthalpy and heat capacity change can undergo extreme deviations from their intrinsic values, depending upon pH and buffer conditions.  相似文献   

4.
The energetics for binding of a diphenyl diamidine antitrypanosomal agent CGP 40215A to DNA have been studied by spectroscopy, isothermal titration calorimetry, and surface plasmon resonance biosensor methods. Both amidines are positively charged under experimental conditions, but the linking group for the two phenyl amidines has a pK(a) of 6.3 that is susceptible to a protonation process. Spectroscopic studies indicate an increase of 2.7 pK(a) units in the linking group when the compound binds to an A/T minor-groove site. Calorimetric titrations in different buffers and pH conditions support the proton-linkage process and are in a good agreement with spectroscopic titrations. The two methods established a proton-uptake profile as a function of pH. The exothermic enthalpy of complex formation varies with different pH conditions. The observed binding enthalpy increases as a function of temperature indicating a negative heat capacity change that is typical for DNA minor-groove binders. Solvent accessible surface area calculations suggest that surface burial accounts for about one-half of the observed intrinsic negative heat capacity change. Biosensor and calorimetric experiments indicate that the binding affinities vary with pH values and salt concentrations due to protonation and electrostatic interactions. The surface plasmon resonance binding studies indicate that the charge density per phosphate in DNA hairpins is smaller than that in polymers. Energetic contributions from different factors were also estimated for the ligand/DNA complex.  相似文献   

5.
2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics exert their antimicrobial activities by targeting the decoding region A site of the rRNA and inhibiting protein synthesis. A prokaryotic specificity of action is critical to therapeutic utility of 2-DOS aminoglycosides as antibiotics. Here, isothermal titration calorimetry (ITC) and fluorescence studies are presented that provide insight into the molecular basis for this prokaryotic specificity of action. Specifically, the rRNA binding properties of the 2-DOS aminoglycosides paromomycin and G418 (geneticin) are compared, using both human and Escherichia coli rRNA A site model oligonucleotides as drug targets. Paromomycin and G418 differ with respect to their specificities of action, with only paromomycin exhibiting a specificity for prokaryotic versus human ribosomes. G418 binds to both the human and E. coli rRNA A sites with a markedly lower affinity than paromomycin, with the affinities of both drugs for the human rRNA A site being lower than those they exhibit for the E. coli rRNA A site. Paromomycin induces the destacking of the base at position 1492 (by E. coli numbering) upon binding to the E. coli rRNA A site, but not the human rRNA A site. By contrast, the binding of G418 induces the destacking of base 1492 when either rRNA A site serves as the drug target. In the aggregate, these results suggest that binding-induced base destacking at the rRNA A site is a critical factor in determining the prokaryotic specificity of aminoglycoside action, with binding affinity for the A site being of secondary importance.  相似文献   

6.
Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.  相似文献   

7.
The interaction between Ca(2+) and EDTA has been studied using isothermal titration calorimetry to elucidate the detailed mechanism of complex formation and to relate the apparent thermodynamic parameters of calcium binding to the intrinsic effects of ionization. It has been shown that Ca(2+) binding to EDTA is an exothermic process in the temperature range 5-48 degrees C and is highly dependent on the buffer in which the reaction occurs. Calorimetric measurements along with pH-titration of EDTA under different solvent conditions shows that the apparent enthalpy effect of the binding is predominantly from the protonation of buffer. Subtraction of the ionization effect of buffer from the total enthalpy shows that the enthalpy of binding Ca(2+) to EDTA is -0.56 kcal mol(-1) at pH 7.5. The DeltaH value strongly depends on solvent conditions as a result of the degree of ionization of the two amino groups in the EDTA molecule, but depends little on temperature, indicating that the heat capacity increment for metal binding is close to zero. At physiological pH values where the amino groups of EDTA with pK(a)=6.16 and pK(a)=10.26 are differently ionized, the coordination of the Ca(2+) ion into the complex leads to release of one proton due to deprotonation of the amino group having pK(a)=10.26. Increasing the pH up to 11.2, where little or no ionization occurs, leads to elimination of the enthalpy component due to ionization, while its decrease to pH 2 leads to its increase, due to protonation of the two amino groups. The heat effect of Ca(2+)/EDTA interactions, excluding the deprotonation enthalpy of the amino groups, i.e. that associated with the intrinsic enthalpy of binding, is higher in value (Delta(b)H(o)=-5.4 kcal mol(-1)) than the apparent enthalpy of binding. Thus, the large DeltaG value for Ca(2+) binding to EDTA arises not only from favorable entropic but also enthalpic changes, depending on the ionization state of the amino groups involved in coordination of the calcium. This explains the great variability in DeltaH obtained in previous studies. The ionization enthalpy is always unfavorable, and therefore dramatically decreases Ca(2+) affinity by reduction of the enthalpy term of the stability function. The origin of the enthalpy and entropy terms in the stability of the Ca(2+)-EDTA complex is discussed.  相似文献   

8.
The alphabeta T cell receptor (TCR) is responsible for recognizing peptides bound and "presented" by major histocompatibility complex (MHC) molecules. We recently reported that at 25 degrees C the A6 TCR, which recognizes the Tax peptide presented by the class I MHC human leukocyte antigen-A*0201 (HLA-A2), binds with a weak DeltaH degrees , a favorable DeltaS degrees , and a moderately negative DeltaC(p). These observations were of interest given the unfavorable binding entropies and large heat capacity changes measured for many other TCR-ligand interactions, suggested to result from TCR conformational changes occurring upon binding. Here, we further investigated the A6-Tax/HLA-A2 interaction using titration calorimetry. We found that binding results in a pK(a) shift, complicating interpretation of measured binding thermodynamics. To better characterize the interaction, we measured binding as a function of pH, temperature, and buffer ionization enthalpy. A global analysis of the resulting data allowed determination of both the intrinsic binding thermodynamics separated from the influence of protonation as well as the thermodynamics associated with the pK(a) shift. Our results indicate that intrinsically, A6 binds Tax/HLA-A2 with a very weak DeltaH degrees , an even more favorable DeltaS degrees than previously thought, and a relatively large negative DeltaC(p). Comparison of these energetics with the makeup of the protein-protein interface suggests that conformational adjustments are required for binding, but these are more likely to be structural shifts, rather than disorder-to-order transitions. The thermodynamics of the pK(a) shift suggest protonation may be linked to an additional process such as ion binding.  相似文献   

9.
We report a very fast and accurate physics-based method to calculate pH-dependent electrostatic effects in protein molecules and to predict the pK values of individual sites of titration. In addition, a CHARMm-based algorithm is included to construct and refine the spatial coordinates of all hydrogen atoms at a given pH. The present method combines electrostatic energy calculations based on the Generalized Born approximation with an iterative mobile clustering approach to calculate the equilibria of proton binding to multiple titration sites in protein molecules. The use of the GBIM (Generalized Born with Implicit Membrane) CHARMm module makes it possible to model not only water-soluble proteins but membrane proteins as well. The method includes a novel algorithm for preliminary refinement of hydrogen coordinates. Another difference from existing approaches is that, instead of monopeptides, a set of relaxed pentapeptide structures are used as model compounds. Tests on a set of 24 proteins demonstrate the high accuracy of the method. On average, the RMSD between predicted and experimental pK values is close to 0.5 pK units on this data set, and the accuracy is achieved at very low computational cost. The pH-dependent assignment of hydrogen atoms also shows very good agreement with protonation states and hydrogen-bond network observed in neutron-diffraction structures. The method is implemented as a computational protocol in Accelrys Discovery Studio and provides a fast and easy way to study the effect of pH on many important mechanisms such as enzyme catalysis, ligand binding, protein-protein interactions, and protein stability.  相似文献   

10.
Electrostatic binding sites of extracellular polymeric substances (EPS) were characterized from titration data using linear programming analysis. Test results for three synthetic solutions of given solutes comprising amino, carboxyl, and phenolic groups indicated that this method was able to identify the electrostatic binding sites. For the six sites with pK(a) between 3 and 10, the estimated pK(a) deviated 0.11 +/- 0.09 from the theoretical values, and the estimated concentrations deviated 3.0% +/- 0.9% from the actual concentrations. Two EPS samples were then extracted from a hydrogen-producing sludge (HPS) and a sulfate-reducing biofilm (SRB). Analysis of charge excess data in titration from pH 3 to 11 indicated that the EPS of HPS comprised of five electrostatic binding sites with pK(a) ranging from 3 to 11. The pK(a) values of these binding sites and the possible corresponding functional groups were pK(a) 4.8 (carboxyl), pK(a) 6.0 (carboxyl/phosphoric), pK(a) 7.0 (phosphoric), pK(a) 9.8 (amine/phenolic), and pK(a) 11.0 (hydroxyl). EPS of the SRB comprised five of similar binding sites (with corresponding pK(a) values of 4.4, 6.0, 7.4, 9.4, and 11.0), plus one extra site at pK(a) 8.2, which was likely corresponding to the sulfhydryl group. The total electrostatic binding site concentration of EPS extracted from HPS were 10.88 mmol/g-EPS, of which the highest concentration was from the site of pK(a) 11.0. The corresponding values for the EPS extracted from SRB were 16.44 mmol/g-EPS and pK(a) 4.4. The total concentrations of electrostatic binding sites found in this study were 20- to 30-fold of those reported for bacterial cell surface, implying that EPS might be more crucial in biosorption of metals than bacterial cell surface in wastewater treatment and in bioremediation.  相似文献   

11.
For the structure and function of proteins, the pH of the solution is one of the determining parameters. Current molecular dynamics (MD) simulations account for the solution pH only in a limited way by keeping each titratable site in a chosen protonation state. We present an algorithm that generates trajectories at a Boltzmann distributed ensemble of protonation states by a combination of MD and Monte Carlo (MC) simulation. The algorithm is useful for pH-dependent structural studies and to investigate in detail the titration behavior of proteins. The method is tested on the acidic residues of the protein hen egg white lysozyme. It is shown that small structural changes may have a big effect on the pK(A) values of titratable residues.  相似文献   

12.
Mason AC  Jensen JH 《Proteins》2008,71(1):81-91
pK(a) values of ionizable residues have been calculated using the PROPKA method and structures of 75 protein-protein complexes and their corresponding free forms. These pK(a) values were used to compute changes in protonation state of individual residues, net changes in protonation state of the complex relative to the uncomplexed proteins, and the correction to a binding energy calculated assuming standard protonation states at pH 7. For each complex, two different structures for the uncomplexed form of the proteins were used: the X-ray structures determined for the proteins in the absence of the other protein and the individual protein structures taken from the structure of the complex (referred to as unbound and bound structures, respectively). In 28 and 77% of the cases considered here, protein-protein binding is accompanied by a complete (>95%) or significant (>50%) change in protonation state of at least one residue using unbound structures. Furthermore, in 36 and 61% of the cases, protein-protein binding is accompanied by a complete or significant net change in protonation state of the complex relative to the separated monomers. Using bound structures, the corresponding values are 12, 51, 20, and 48%. Comparison to experimental data suggest that using unbound and bound structures lead to over- and underestimation of binding-induced protonation state changes, respectively. Thus, we conclude that protein-protein binding is often associated with changes in protonation state of amino acid residues and with changes in the net protonation state of the proteins. The pH-dependent correction to the binding energy contributes at least one order of magnitude to the binding constant in 45 and 23%, using unbound and bound structures, respectively.  相似文献   

13.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

14.
G Bains  R T Lee  Y C Lee  E Freire 《Biochemistry》1992,31(50):12624-12628
The energetics of association of wheat germ agglutinin (WGA) with N-acetylglucosamine (GlcNAc) and its beta(1,4) oligomers have been measured using isothermal titration calorimetry. Association constants of 0.4, 5.3, 11.1, 12.3, and 19.1 mM-1 and enthalpies of binding of -6.1, -15.6, -19.4, -19.3, and -18.2 kcal mol-1 were obtained at 26 degrees C for the titration of WGA with GlcNAc, (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, and (GlcNAc)5, respectively. The term T delta S was always of negative value, indicating that the binding process is enthalpically driven. Titrations of WGA performed at pH 4.5 did not differ significantly from those performed at pH 7.0, suggesting that no groups with a pKa in this range are directly involved in the binding event. Also, performing the titration in a buffer system with a higher enthalpy of protonation did not change the enthalpy of binding confirming that there is no net protonation or deprotonation when WGA binds GlcNAc residues at pH 7. A model of four independent binding sites was found to adequately describe the binding curves, except in the case of (GlcNAc)4 which exhibited positive cooperativity. The energetic values are discussed within the context of the structure of the WGA-(GlcNAc)2 complex.  相似文献   

15.
Zinc insulin hexamer has been shown to undergo a phenol-induced T6 to R6 conformational transition in solution. Our circular dichroic (CD) studies demonstrate that insulin undergoes pH-dependent conformational changes over the pH range of 6-10 in the T-state and in the R- state. In order to determine which specific amino acid residues may be responsible for these pH-dependent changes, a series of insulin analogs were utilized. In the T-state, the pH dependent CD changes monitored in the far UV region have a pK of 8.2 and appear to be related to the titration of the A1-Gly amino group. Using the near UV CD a second pH-dependent conformational change was detected with a pK of 7.5 in the T-state. 1H N.M.R. studies suggest that B5-His may be responsible for this conformational transition. In the presence of m-cresol (R-state), the pK value was found to be 6.9. During this titration, the increased ellipticity for the R-state is diminishing as pH decreases from pH 8 to 6, and no difference in ellipticity was observed at 255 nm between T- and R-states at pH 6. Therefore, this may be due to the transition from the R back to the T-state.  相似文献   

16.
17.
Long aliphatic hydrocarbon chains aggregate in aqueous solution due to the hydrophobic effect, forming structures such as micelles and membranes, while amino groups titrate at basic pH. These two biologically important behaviors are linked in alkylamines, in which the pK(a) of the amino group is shifted downward by aggregation. In this paper we study the thermodynamics of these coupled processes, following aggregation by observing alkylamine pH titration behavior. The magnitude of the shift depended on the aliphatic chain length and on the concentration of alkylamine: longer chains and higher concentrations lowered the pK(a) to a greater extent. Gibbs free energies of protonation and aggregation were calculated from the pK(a) shifts. Enthalpies, entropies, and heat capacities were estimated by van't Hoff analysis from the pK(a) shift dependencies on temperature. However, the results were less precise than the calorimetrically measured values, as described in the following article. A model to calculate titration curves, pK(a) shifts, and aggregation of uncharged alkylamines as a function of aliphatic chain length, concentration, and temperature is presented.  相似文献   

18.
Compstatin is a 13-residue cyclic peptide that inhibits complement activation by binding to complement component, C3. Although the activity of compstatin has been improved severalfold using combinatorial and rational design approaches, the molecular basis for its interaction with C3 is not yet fully understood. In the present study, isothermal titration calorimetry was employed to dissect the molecular forces that govern the interaction of compstatin with C3 using four different compstatin analogs. Our studies indicate that the C3-compstatin interaction is an enthalpy-driven process. Substitution of the valine and histidine residues at positions 4 and 9 with tryptophan and alanine, respectively, resulted in the increase of enthalpy of the interaction, thereby increasing the binding affinity for C3. The data also suggest that the interaction is mediated by water molecules. These interfacial water molecules could be the source for unfavorable entropy and large negative heat capacity changes observed in the interaction. Although part of the negative heat capacity changes could be accounted for by the water molecules, the rest might be resulting from the conformational changes in C3 and/or compstatin up on binding. Finally, we propose based on the pK(a) values determined from the protonation studies that histidine on compstatin participates in protonation changes and contributes to the specificity of the interaction between compstatin and C3. These protonation changes vary significantly between the binding of different compstatin analogs to C3.  相似文献   

19.
Smith AL  Kassman J  Srour KJ  Soto AM 《Biochemistry》2011,50(44):9434-9445
RNA is an important biological target because it plays essential roles in many pathogenic and normal cellular processes. The design of inhibitors that target RNA involves optimization of noncovalent interactions, including van der Waals, hydrogen bond, and electrostatic interactions. Although sometimes regarded as nonspecific, electrostatic interactions are important in this optimization because the specific position of the phosphates may allow for specific charge-charge interactions with bound ligands. In this work, we have investigated the contribution of electrostatic interactions to the binding affinity of aminoglycoside antibiotics for TAR RNA. Because the charges in aminoglycoside antibiotics are provided by protonated amino groups, it is difficult to separate the contribution of hydrogen bonds and electrostatics to their binding specificity. Hence, we have investigated the dependence of the binding affinity on salt concentration, which should affect only the electrostatic contributions. Our results show that four aminoglycoside antibiotics (paromomycin, kanamycin-B, gentamycin, and tobramycin) bind TAR RNA with different affinities. Furthermore, the dependence of the binding affinity on salt concentration is different for kanamycin-B and paromomycin, with kanamycin-B showing a stronger dependence. Because all these antibiotics contain five positive charges, the results suggest that each antibiotic orients its charges in different ways when bound to TAR RNA. Our overall results support the idea that charge-charge interactions can contribute significantly to the specific binding of antibiotics to TAR RNA. Hence, the exact position of the charges should be considered in the design of any inhibitor of the interactions of TAR RNA.  相似文献   

20.
For routine pK(a) calculations of protein-ligand complexes in drug design, the PEOE method to compute partial charges was modified. The new method is applicable to a large scope of proteins and ligands. The adapted charges were parameterized using experimental free energies of solvation of amino acids and small organic ligands. For a data set of 80 small organic molecules, a correlation coefficient of r(2) = 0.78 between calculated and experimental solvation free energies was obtained. Continuum electrostatics pK(a) calculations based on the Poisson-Boltzmann equation were carried out on a validation set of nine proteins for which 132 experimental pK(a) values are known. In total, an overall RMSD of 0.88 log units between calculated and experimentally determined data is achieved. In particular, the predictions of significantly shifted pK(a) values are satisfactory, and reasonable estimates of protonation states in the active sites of lysozyme and xylanase could be obtained. Application of the charge-assignment and pK(a)-calculation procedure to protein-ligand complexes provides clear structural interpretations of experimentally observed changes of protonation states of functional groups upon complex formation. This information is essential for the interpretation of thermodynamic data of protein-ligand complex formation and provides the basis for the reliable factorization of the free energy of binding in enthalpic and entropic contributions. The modified charge-assignment procedure forms the basis for future automated pK(a) calculations of protein-ligand complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号