首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
植物材料中尿囊素及尿囊酸的高效液相色谱法测定   总被引:3,自引:1,他引:2  
尿囊酸性质极不稳定,需要有快速,准确的分离检测方法,本试验用高效液相色谱法分离检测尿囊素和尿囊酸,并认为该法是一种较好的测试方法。  相似文献   

2.
尿囊酸酶是嘌呤代谢途径的重要酶之一,与动物排泄物的产生直接有关.结合当前研究进展,总结了动物体尿囊酸酶的种属特异性、蛋白质及其基因结构和组织表达.并对尿囊酸酶的活性检测方法进行了简要介绍.  相似文献   

3.
从四季豆幼苗提取、部分纯化尿囊酸酰胺水解酶,分离出两个同功酶:一分子量同功酶(尿圳酸酰胺水解酶Ⅰ),另一为小分子量同功酶(尿囊酸酰胺水解酶Ⅱ),并对后者的性质进行研究。  相似文献   

4.
酰脲代谢在许多固氮豆科植物氮素代谢中起重要作用;尿囊酸的酰胺水解酶(EC3.5.3.9)分解尿囊酸成为脲基乙醇酸和CO2、NH3,脲基乙醇酸的酰胺水解酶进一步分解脲基乙醇酸产生乙醛酸和CO2、NH3.该文首次报告测定四季豆尿囊酸降解酶(分解尿囊酸的酶)的方法,酶反应基质需要盐酸苯肼存在.在四季豆干种子、幼苗根、茎和叶,均可测出尿囊酸降解酶活力.从四季豆幼苗分离出两个尿囊酸降解酶.一个分子量大于200 kD,另一个分子量为13.5 kD;小分子量的尿囊酸降解酶(没有脲基乙醇酸酰胺水解酶或脲酶活力)用于性质研究.酶反应产物分析表明,该酶是尿囊酸的酰胺水解酶.该酶反应的最适pH为8.5.Mn2 是该酶的金属辅助因子.Km为76μmol/L,Vmax为16.7 nKat/mg(=1 002 nmol min1mg1).乙醛酸和乙醇酸抑制该酶活力.赖氨酸残基和色氨酸残基是酶活力的必需基团;巯基和酪氨酸残基不是酶活力的必需基团.  相似文献   

5.
利用胶体金免疫电镜技术,观察了盘基网柄菌细胞分化与凋亡过程中胞内尿囊酸酶的位置变化。结果表明,在细胞聚集期细胞产生的尿囊酸酶主要分布于线粒体及周围细胞质内。到了细胞丘时期,尿囊酸酶只特异地存在于发生内自噬的线粒体内,且仅局限于线粒体因内自噬产生的空泡区域,这些发生线粒体内自噬的细胞将分化成前孢子细胞。随着前孢子细胞分化的进行,尿囊酸酶颗粒在细胞内分布逐渐减少,在靠近质膜处的空泡内还能观察到一些酶颗粒;而另一些细胞内,几乎所有的胞器内都能观察到酶颗粒,一直延续至柄细胞形成。从中可以看到尿囊酸酶在将发育成孢子细胞和柄细胞两种类型细胞内的分布位置明显不同,结果提示了尿囊酸酶蛋白与盘基网柄菌细胞分化和凋亡调控途径有密切关系。  相似文献   

6.
蚕豆根、茎和叶含有0.31~0.70 μmol酰脲·g~(-1)FW,并受结瘤和生长发育的影响。摘除正在生长的器官可观察到同腋位叶片酞脲含量暂时升高现象。 叶片中酰脲主要是尿囊酸。尿囊素酶和脲酶活性分别为0.30 μmol尿囊酸·g~(-1)FW·h~(-1)和0.19 μmol NH_3·g~(-1)FW·h~(-1)。尿囊酸含量和尿囊素酶活性日变化相似,只是后者峰值比前者出现早。  相似文献   

7.
杨梅、沙棘和赤杨三种放线菌结瘤植物根瘤、根部有机氮化物的组分中,都含有占总有机氮化物50%以上的尿囊酸,说明在它们的根瘤中合成了大量的酰脲;同时,三种植物结瘤植株的茎木质部提取物中也含有大量的尿囊酸,表明根瘤将其合成的酰脲向植物地上部位运送。三种植物的根瘤还将其合成的特定的氨基酸及酰胺向地上部位转运,其中杨梅根瘤将固定的氮素以Asn和Gln的形式输出,而根部则以Arg的形式向上转运;沙棘根瘤以Ash,Gln及Ser,赤杨根瘤以Cit的形式合成并转运固定的氮素;后两种植物的无根瘤植株,以NH_4~+为氮源时,在转运的氨基酸组分中Arg的比例明显提高。  相似文献   

8.
本文对从中国东北地区土壤中分离到的8株弗氏中华根瘤菌(Sinorhizobiumfredit)进行了血清学和氢代谢研究。交叉凝集试验结果表明其中存在3种血清型,而Sj5与国内外目前发现的14种S.fredii接种的大豆依赖共生固氮作用,在其株木质部汁液中,含有大量的酰脲(尿囊酸+尿囊素),它是共生固氮氮素贮存和运输的主要形式,与接种B.japonicum的值株木质部汁液中的氮运输特征基本相同。而施以无机氮源的大豆植株,其木质部汁液中酰脲含量相对较低,但却含有相对多的氮基酸[1]。  相似文献   

9.
研究了苛求芽孢杆菌尿囊酸酰胺水解酶的基本性质、稳定性及调节。粗酶作用于尿囊酸的Km为7.1mmol/L,Vmax为50μmol/L·min-1·mg-1蛋白质。Co2+、Ni2+、Cd2+可部分代替Mn2+作为金属辅因子,活力分别为对照的17%,14%和11%。Fe2+、Cu2+、Zn2+分别抑制酶活力(%):  相似文献   

10.
赤豆种子萌发过程中,幼苗迅速合成酰脲,在酰脲含量达到最大值前,尿囊酸含量高于尿囊素含量,子叶合成酰脲最迅速;酰脲含量达到最大值后,茎带叶的酰脲含量最高。幼苗累积酰脲在品种间相似。种子萌发过程中,幼苗尿囊素酶活力迅速呈线性增加,且与酰脲含量变化趋势一致。幼苗尿囊素酶较耐热。  相似文献   

11.
One-carbon metabolism that involves folate metabolism and homocysteine metabolism plays a powerful role in embryonic development. Any impairment to this metabolism during the neurulation process would trigger the occurrence of neural tube defects (NTDs). The great importance of one-carbon metabolism necessitates the establishment of methodology to determine the relative compounds involved in the metabolic cycles. We have developed a sensitive method for measurement of 11 pivotal compounds by using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS/MS) in sera of pregnant women. Use of an aqueous chromatography column increased retention time and separation of the polar compounds in the system, resulting in fewer co-elution and interference from the other compounds that can lead to ion suppression. Calibration curves suitable for the analysis of maternal serum were linear (r(2)>0.997) with limits of detection from 0.05 to 1ng/mL. Intra-day coefficients of variation (CVs) and inter-day CVs were both lower than 11%. With the developed method, 96 serum samples including 46 cases and 50 controls were analyzed. The established method provided a reliable method for quantifying most of the compounds involved in the one-carbon metabolism simultaneously, thus made it possible to elucidate NTDs with multiple factors instead of one single and provided a solid foundation for the diagnosis and prevention of NTDs as well as some other one-carbon metabolism related diseases.  相似文献   

12.
Since mitochondria play roles in amino acid metabolism, carbohydrate metabolism and fatty acid oxidation, defects in mitochondrial function often compromise the lives of those who suffer from these complex diseases. Detecting mitochondrial metabolic changes is vital to the understanding of mitochondrial disorders and mitochondrial responses to pharmacological agents. Although mitochondrial metabolism is at the core of metabolic regulation, the detection of subtle changes in mitochondrial metabolism may be hindered by the overrepresentation of other cytosolic metabolites obtained using whole organism or whole tissue extractions. Here we describe an isolation method that detected pronounced mitochondrial metabolic changes in Drosophila that were distinct between whole-fly and mitochondrial enriched preparations. To illustrate the sensitivity of this method, we used a set of Drosophila harboring genetically diverse mitochondrial DNAs (mtDNA) and exposed them to the drug rapamycin. Using this method we showed that rapamycin modifies mitochondrial metabolism in a mitochondrial-genotype-dependent manner. However, these changes are much more distinct in metabolomics studies when metabolites were extracted from mitochondrial enriched fractions. In contrast, whole tissue extracts only detected metabolic changes mediated by the drug rapamycin independently of mtDNAs.  相似文献   

13.
Metabolic pathways of primary metabolism of discs isolated from potato tubers were evaluated by the use of a gas chromatography-mass spectrometry (GC-MS) method generated specifically for this purpose. After testing several possible methods including chemical ionization, it was decided for reasons of sensitivity, reproducibility and speed to use electron impact ionization-based GC-MS analysis. The specific labelling and label accumulation of over 30 metabolites including a broad number of sugars, organic and amino acids was analysed following the incubation of tuber discs in [U-(13)C]glucose. The reproducibility of this method was similar to that found for other GC-MS-based analyses and comparison of flux estimates from this method with those obtained from parallel, yet less comprehensive, radiolabel experiments revealed close agreement. Therefore, the novel method allows quantitatively evaluation of a broad range of metabolic pathways without the need for laborious (and potentially inaccurate), chemical fractionation procedures commonly used in the estimation of fluxes following incubation in radiolabelled substrates. As a first experiment the GC-MS method has been applied to compare the metabolism of wild type and well-characterized transgenic potato tubers exhibiting an enhanced sucrose mobilization. The fact that this method is able to rapidly yield further comprehensive information into primary metabolism illustrates its power as a further phenotyping tool for the analysis of plant metabolism.  相似文献   

14.
A method for the on-line calculation of conversion rates and yield coefficients under dynamic process conditions was developed. The method is based on cumulated mass balances using a moving average method. Elemental balances were used to test the measured cumulated quantities for gross errors and inappropriate stoichiometry definition followed by data reconciliation and estimation of non-measured conversion rates, using a bioprocess set-up including multiple on-line analysis techniques. The quantitative potential of the proposed method is demonstrated by executing transient experiments in aerobic cultures of Saccharomyces cerevisiae on glucose. Rates and yield coefficients could be consistently quantified in shift-up, shift-down, and accelerostat experiments. The method shows the capability to describe quantitatively transient changes in metabolism including uncoupling of catabolism and anabolism, also for the case when multiple components of metabolism are not measured. The validity of the experiment can be evaluated on-line. Additionally, the method detects with high sensitivity inappropriate stoichiometry definition, such as a change in state of metabolism. It was shown that concentration values can be misleading for the identification of the metabolic state. In contrast, the proposed method provides a clear picture of the metabolic state and new physiological regulations could be revealed. Hence, the novelty of the proposed method is the on-line availability of consistent stoichiometric coefficients allowing a significant speed up in strain characterization and bioprocess development using minimal knowledge of the metabolism. Additionally, it opens up the use of transient experiments for physiological studies.  相似文献   

15.
Uzarski  D.G.  Burton  T.M.  Stricker  C.A. 《Hydrobiologia》2001,455(1-3):137-155
We designed an open-ended community metabolism chamber to simultaneously measure surface and hyporheic metabolism. Our chamber design eliminated reaeration, compartmentalized metabolism, maintained ambient conditions and included hyporheic respiration. We compared results from our hyporheic chamber to results obtained from: (1) closed benthic community metabolism chambers constructed as recommended by Bott et al. (1978), and (2) whole-stream metabolism techniques as modified by Marzolf et al. (1994). Simultaneous comparisons of all three procedures were made for a 35 m riffle section of Augusta Creek, a 3rd-order Michigan stream, in July 1997 and repeated in July 1998. Simultaneous comparisons of all three procedures were also made for a 30 m sandy run section of Augusta Creek in September 1997, and repeated in September 1998. Our hyporheic chamber estimates for community respiration (CR24) were similar to those obtained using the whole-stream metabolism procedure but were considerably higher than estimates obtained using the closed benthic chambers in three of the four experiments. These data suggest that our chamber design provided estimates of community metabolism which included both benthic and hyporheic respiration. The chamber incorporates several positive aspects of both closed chambers and the whole-stream method. This new method can be replicated, eliminates the need for a reaeration coefficient, ambient conditions are better approximated since it remains an open system, and it appears to provide more realistic estimates of whole-stream metabolism compared to the traditional chamber approach.  相似文献   

16.
Understanding altered metabolism is an important issue because altered metabolism is often revealed as a cause or an effect in pathogenesis. It has also been shown to be an important factor in the manipulation of an organism's metabolism in metabolic engineering. Unfortunately, it is not yet possible to measure the concentration levels of all metabolites in the genome‐wide scale of a metabolic network; consequently, a method that infers the alteration of metabolism is beneficial. The present study proposes a computational method that identifies genome‐wide altered metabolism by analyzing functional units of KEGG pathways. As control of a metabolic pathway is accomplished by altering the activity of at least one rate‐determining step enzyme, not all gene expressions of enzymes in the pathway demonstrate significant changes even if the pathway is altered. Therefore, we measure the alteration levels of a metabolic pathway by selectively observing expression levels of significantly changed genes in a pathway. The proposed method was applied to two strains of Saccharomyces cerevisiae gene expression profiles measured in very high‐gravity (VHG) fermentation. The method identified altered metabolic pathways whose properties are related to ethanol and osmotic stress responses which had been known to be observed in VHG fermentation because of the high sugar concentration in growth media and high ethanol concentration in fermentation products. With the identified altered pathways, the proposed method achieved best accuracy and sensitivity rates for the Red Star (RS) strain compared to other three related studies (gene‐set enrichment analysis (GSEA), significance analysis of microarray to gene set (SAM‐GS), reporter metabolite), and for the CEN.PK 113‐7D (CEN) strain, the proposed method and the GSEA method showed comparably similar performances. Biotechnol. Bioeng. 2009;103: 835–843. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
In this paper, three sampling techniques for rapid quenching of cellular metabolism and subsequent separation of cells from fermentation broth are compared: (i) quick freezing of fermentation broth directly in liquid nitrogen; (ii) quenching metabolism by exposing the fermentation broth to stainless steel beads (4-mm diameter) in a filter syringe precooled to -18 degrees C; and (iii) withdrawal of the filtrate through a 0.45 microm filter attached to a syringe and a needle inserted directly into the fermentor. It was concluded that use of liquid nitrogen as a quenching method to rapidly arrest cellular metabolism, for quantitative analysis of extracellular glucose, is not a very reliable method and that the filter syringe steel beads work very well.  相似文献   

18.
随着代谢综合症在世界范围内的广为流行,已经引起人们的高度重视.代谢综合征以肥胖和代谢异常为特征,胰岛素抵抗为主要的病理机制.瘦素主要来源于脂肪组织,是调节体内脂肪储量和维持能量平衡的一种内分泌激素.瘦素缺乏和瘦素抵抗不仅可以直接引起胰岛素抵抗,而且可以通过导致肥胖继而参与胰岛素抵抗的发生,最终引起代谢综合征.瘦素作为一种新的代谢综合征致病因子,参与代谢综合征的发生发展,故调节瘦素水平为临床治疗代谢综合症提供了新的思路和方法.本文综述了瘦素水平与代谢综合症的关系,以及调节瘦素水平治疗代谢综合征的方法.  相似文献   

19.
The metabolic networks of different species show a large variety in their structural design. In this work, the evolution of functional properties of metabolism in relation with metabolic network structure is investigated. The metabolism of ancestral species is inferred from the metabolism of contemporary species using a Bayesian network model for metabolism evolution. Subsequently, these networks are analysed with the recently developed method of network expansion. This method allows for a structural analysis of metabolic networks as well as a quantification of network functions in terms of their synthesising capacities when they are provided with certain external resources. The evolutionary dynamics of one particular network function: the metabolic expansion of glucose is investigated.  相似文献   

20.
The approximation method of N. Rashevsky is discussed and reviewed. It is shown that in addition to theexplicit assumptions and approximations there is involved the assumption that the rate of metabolism is the same at every point in the cell and that theaverage rate of metabolism is different from zero. An expression is given for the error in the approximate method when the rate of metabolism is any function of the concentration. It is also shown that a solution in theform of that obtained by the approximate method is not possible if the generalized laws of diffusion are assumed to apply. A portion of this work was performed while the author was a research participant, Oak Ridge Institute of Nuclear Studies, assigned to the Mathematics Panel, Oak Ridge National Laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号