首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The GM2-activator protein (GM2-AP) is a small lysosomal lipid transfer protein essential for the hydrolytic conversion of ganglioside GM2 to GM3 by beta-hexosaminidase A. The crystal structure of human apo-GM2-AP is known to consist of a novel beta-cup fold with a spacious hydrophobic interior. Here, we present two new structures of GM2-AP with bound lipids, showing two different lipid-binding modes within the apolar pocket. The 1.9A structure with GM2 bound shows the position of the ceramide tail and significant conformational differences among the three molecular copies in the asymmetric unit. The tetrasaccharide head group is not visible and is presumed to be disordered. However, its general position could be established through modeling. The structure of a low-pH crystal, determined at 2.5A resolution, has a significantly enlarged hydrophobic channel that merges with the apolar pocket. Electron density inside the pocket and channel suggests the presence of a trapped phospholipid molecule. Structure alignments among the four crystallographically unique monomers provide information on the potential role for lipid binding of flexible chain segments at the rim of the cavity opening. Two discrete orientations of the S130-T133 loop define an open and a closed configuration of the hydrophobic channel that merges with the apolar pocket. We propose: (i) that the low-pH structure represents an active membrane-binding conformation; (ii) that the mobile S130-T133 loop serves as a gate for passage of ligand into the apolar pocket; and (iii) that this loop and the adjacent apolar V59-W63 loop form a surface patch with two exposed tryptophan residues that could interface with lipid bilayers.  相似文献   

2.
GM2-activator protein (GM2-AP) is a lipid transfer protein that has the ability to stimulate the enzymatic processing of gangliosides as well as T-cell activation through lipid presentation. Our previous X-ray crystallographic studies of GM2-AP have revealed a large lipid binding pocket as the central overall feature of the structure with non-protein electron density within this pocket suggesting bound lipid. To extend these studies, we present here the 2A crystal structure of GM2-AP complexed with platelet activating factor (PAF). PAF is a potent phosphoacylglycerol whose toxic patho-physiological effects can be inhibited by GM2-AP. The structure shows an ordered arrangement of two bound lipids and a fatty acid molecule. One PAF molecule binds in an extended conformation within the hydrophobic channel that has an open and closed conformation, and was seen to contain bound phospholipid in the low pH apo structure. The second molecule is submerged inside the pocket in a U-shaped conformation with its head group near the single polar residue S141. It was refined as lyso-PAF as it lacks electron density for the sn-2 acetate group. The alkyl chains of PAF interact through van der Waals' contacts, while the head groups bind in different environments with their phosphocholine moieties in contact with aromatic rings (Y137, F80). The structure has revealed further insights into the lipid binding properties of GM2-AP, suggesting an unexpected unique mode of lipid packaging that may explain the efficiency of GM2-AP in inhibiting the detrimental biological effects of PAF.  相似文献   

3.
Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398).  相似文献   

4.
A patient diagnosed as having Type-AB GM2-gangliosidosis was found to have a defect in β-hexosaminidase A, but not in the activator (GM2-activator) specific for the enzymic hydrolysis of GM2 ganglioside. β-Hexosaminidase A and B isolated from the brain of the patient showed normal activity toward synthetic substrates, but could not hydrolyze GM2 ganglioside in the presence of GM2-activator isolated from normal human liver or brain. The level of GM2-activator in the brain of this patient was three times higher than that found in the two control brains. The activator isolated from the brain of this patient was able to stimulate the hydrolysis of GM2 ganglioside catalyzed by human hepatic or brain β-hexosaminidase A but not by B.  相似文献   

5.
The biosynthesis and secretion of lysosomal GM2-activator was studied in fibroblasts from controls and patients of GM2 gangliosidosis metabolically labelled with [3H]-leucine. Immunoprecipitation was performed with affinity-purified antibodies to human kidney GM2-activator protein. Normal fibroblasts and fibroblasts of variant B and O of GM2 gangliosidosis secrete GM2-activator protein as a 24-kDa polypeptide, which is able to stimulate degradation of ganglioside GM2 by beta-hexosaminidase A in the in vitro assay. In the presence of 10mM NH4Cl the rate of secretion is twice as high as in normal fibroblasts. Intracellularly, GM2-activator protein is represented in these cell lines by polypeptides with apparent molecular masses ranging from 21 kDa-22.5 kDa. Under the same labelling conditions, in two cell lines of patients with variant AB of infantile GM2 gangliosidosis intracellularly only traces of GM2-activator were detectable, whereas significant amounts of polypeptides with molecular masses between 25 and 26.5 kDa could be precipitated from the media of these fibroblasts.  相似文献   

6.
GM2 activator protein (GM2AP) is a cofactor for stimulating the enzymatic hydrolysis of the glycolipid GM2 by -hexosaminidase A to produce GM3. We have examined the conformation of GM2AP before and after its interaction with GM2, GM3, and GA2 using circular dichroism and fluorescence spectroscopy techniques. In the presence of GM2, a blue shift of the fluorescence emission maximum and a strong decrease of molar ellipticity values in circular dichroism spectra were observed only at pH 4.5 and at GM2/GM2AP molar ratio higher than 10:1 (up to 50:1). These results suggest that GM2AP assumed a more organized -helical conformation with the tryptophan residues moving from the polar medium toward the hydrophobic environment of the protein. The conformation of GM2AP in the presence of the downstream reaction product, GM3, or a less favorable substrate, GA2, clearly differed from that in the presence of GM2. The relationships between spectroscopic changes and enzymatic activity, herein discussed, strongly suggest that the specific conformation exhibited by GM2AP in the presence of GM2 is functional to serve as an activator for the enzymatic hydrolysis of GM2.  相似文献   

7.
The levels of hexosaminidase A activity in cultivated fibroblasts of two patients with GM2-gangliosidosis were close to the normal range with 4-methylumbelliferyl-beta-D-2-acetamido-2-deoxyglucopyranoside and 4-methylumbelliferyl-beta-D-2-acetamido-2-deoxygalactopyranoside as substrates, and the enzymes were normal in most parameters analyzed. However, the enzymes of both patients were almost completely inactive against two specific substrates for hexosaminidase A, rho-nitrophenyl-6-sulfo-2-acetamido-2-deoxy-beta-D-glucopyranoside, and ganglioside GM2 in the presence of GM2-activator. Fibroblast extracts of both patients showed normal hexosaminidase B and GM2-activator activity, the latter was strongly decreased in two cases with variant AB. It is suggested that human hexosaminidase A may contain two different active sites which might be inactivated separately by different mutations.  相似文献   

8.
By using a sensitive method, we assayed lysocompounds of gangliosides and asialogangliosides in tissues from four patients with GM2 gangliosidosis (one with Sandhoff disease and three with Tay-Sachs disease) and from three patients with GM1 gangliosidosis [one with infantile type (fetus), one with late-infantile, and one with adult type]. In the brain and spinal cord of all the patients except for an adult GM1 gangliosidosis patient, abnormal accumulation of the lipids was observed, though the concentration in the fetal tissue was low. In GM2 gangliosidosis, the amounts of lyso GM2 ganglioside accumulated in the brain were similar among the patient with Sandhoff disease and the patients with Tay-Sachs disease, whereas the concentration of asialo lyso GM2 ganglioside in the brain was higher in the former patient than in the latter patients. By comparing the sphingoid bases of neutral sphingolipids, gangliosides, and lysosphingolipids, it was suggested that lysosphingolipids in the diseased tissue are synthesized by sequential glycosylation from free sphingoid bases, but not by deacylation of the sphingolipids. Because lysosphingolipids are known to be cytotoxic, the abnormally accumulated lysophingolipids may well be the pathogenetic agent for the neuronal degeneration in gangliosidoses.  相似文献   

9.
A series of GM2 analogs in which GM2 epitope was coupled to a variety of glycosyl lipids were designed and synthesized to investigate the mechanism of enzymatic hydrolysis of GM2 ganglioside. The coupling of N-Troc-protected sialic acid and p-methoxyphenyl galactoside acceptor gave the crystalline disaccharide, which was further coupled with galactosamine donor to give the desired GM2 epitope trisaccharide. After conversion into the corresponding glycosyl donor, the trisaccharide was coupled with galactose, glucose and artificial ceramide (B30) to give the final compounds. The result on hydrolysis of GM2 analogs indicates that GM2 activator protein requires one spacer sugar between GM2 epitope and the lipid moiety to assist the hydrolysis of the terminal GalNAc residue. Synthetic studies on sialoglycoconjugates, Part 140. For part 139, see Ref [1].  相似文献   

10.
Differential scanning calorimetry (DSC) and film balance measurements were performed to study the interactions of the GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glc1 -->1'Cer (GM2)-activator protein with phospholipid/ganglioside vesicles and monolayers. The nonglycosylated form of the GM2-activator protein, added to unilamellar lipid vesicles of different composition, causes differential effects on the gel to liquid-crystalline phase transition peaks. The phase transition temperature (Tm) of pure dimyristoylglycerophosphocholine (DMPC) bilayer is slightly decreased. When lipids which specifically bind the GM2-activator protein are incorporated into the vesicles (e.g. a sulfatide or gangliosides) a shoulder in the thermograms at higher temperatures is observed, indicating an increase of the stability of the gel phase in relation to the liquid-crystalline phase. We also studied the surface activity of a glycosylated and a nonglycosylated GM2-activator protein at the air-water interface. The glycosylated form showed a slightly lower surface activity than the GM2-activator protein without oligosaccharide moiety. When the GM2-activator protein is added to the sub-phase of a surface covered with a lipid monolayer, it can only insert into the monolayer and reach the air-water interface below a monolayer pressure of 25 mN.m-1, depending on the lipid composition, and not when the monolayers are at the bilayer equivalence pressure of 30-35 mN.m-1. Particularly for Galbeta1-->3GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta 1-->4Glc1-->1'Cer (GM1) and GM2 containing films, the critical pressures (picrit) when no additional increase in surface pressure is observed after addition of the protein into the subphase, are much lower. This leads to the conclusion that binding of the GM2 activator protein to the ganglioside headgroups prevents the protein from reaching the air-water interface. The protein is then located preferentially at the lipid-water interface and cannot penetrate into the chain region.  相似文献   

11.
The GM2-activator protein (GM2AP) belongs to a group of five small, nonenzymatic proteins that are essential cofactors for the degradation of glycosphingolipids in the lysosome. It mediates the interaction between the water-soluble enzyme beta-hexosaminidase A and its membrane-embedded substrate, ganglioside GM2, at the lipid-water interphase. Inherited defects in the gene encoding this glycoprotein cause a fatal neurological storage disorder, the AB variant of GM2 gangliosidosis. With the aim to establish a convenient eukaryotic system that allows the efficient production of functionally folded, glycosylated GM2AP and offers the potential of cost-efficient isotopic labeling for structural studies by NMR spectroscopy, we established the expression of recombinant GM2AP in the methylotrophic yeast Pichia pastoris. For the construction of expression plasmids, either the full cDNA encoding human GM2AP preproprotein was cloned in the expression vector pPIC3.5K, or the cDNA encoding only the mature form of GM2AP was inserted in the vector pPIC9K under control of the alcohol oxidase 1 promoter. Both plasmids led to the successful secretory expression of active, glycosylated GM2AP, which could easily be purified by Ni-NTA chromatography due to the hexahistidine tag introduced at the C-terminus. Remarkably, the expression of this membrane-active protein in P. pastoris was accompanied by two peculiarities which were not encountered in other expression systems for GM2AP: First, a significant fraction of the secreted protein existed in the form of aggregates, and second, considerable amounts of noncovalently bound lipids were associated with the recombinant protein. A three-step purification scheme was therefore devised consisting of Ni-NTA, reversed phase, and gel filtration chromatography, which finally yielded 10-12 mg of purified, monomeric GM2AP per liter of expression supernatant. MALDI- and ESI-TOF mass spectrometry were employed to assess the processing, homogeneity, and glycosylation pattern of the recombinant protein. Surface plasmon resonance spectroscopy allowed the interaction of GM2AP with immobilized liposomes to be studied. A modified version of FM22 minimal medium was then used in the cost-effective (15)N-labeling of GM2AP to assess its amenability for the structural investigation by NMR spectroscopy. Initial (15)N,(1)H-HSQC experiments show a well-folded protein and provide evidence for extensive conformational exchange processes within the molecule.  相似文献   

12.
Undec-10-enyl, undec-10-ynyl and 11-azidoundecyl glycoside analogues corresponding to the oligosaccharides of human gangliosides GM3, GM2 and GM1 were synthesized in high yields using glycosyltransferases from Campylobacter jejuni. Due to poor water solubility of the substrates, the reactions were carried out in methanol-water media, which for the first time were shown to be compatible with the C. jejuni α-(2→3)-sialyltransferase (CST-06) and β-(1→4)-N-acetylgalactosaminyltransferase (CJL-30). Bioequivalence of our synthetic analogues and natural gangliosides was examined by binding to Vibrio cholerae toxin and to the B subunit of Escherichia coli heat-labile enterotoxin. This bioequivalence was confirmed by binding mouse and human monoclonal antibodies to GM1 and acute phase sera containing IgM and IgG antibodies to GM1 from patients with the immune-mediated polyneuropathy Guillain-Barré syndrome. The synthesized compounds were analyzed by 1D and 2D 900 MHz NMR spectroscopy. TOCSY and DQF-COSY experiments in combination with 13C-1H correlation measurements (HSQC, HMBC) were carried out for primary structural characterization, and a complete assignment of all 1H and 13C chemical shifts is presented.  相似文献   

13.
To elucidate the mechanism underlying the hydrolysis of the GalNAcβ1→4Gal linkage in ganglioside GM2 [GalNAcβ1→4(NeuAcα2→3)Galβ1→4Glcβ1→1′ Cer] by β-hexosaminidase A (Hex A) with GM2 activator protein, we designed and synthesized two kinds of GM2 linkage analogues—6′-NeuAc-GM2 and α-GalNAc-GM2. In this paper, the efficient and systematic synthesis of these GM2 analogues was described. The highlight of our synthesis process is that the key intermediates, newly developed sialyllactose derivatives, were efficiently prepared in sufficient quantities; these derivatives directly served as highly reactive glycosyl acceptors and coupled with GalNTroc donors to furnish the assembly of GM2 tetrasaccharides in large quantities.  相似文献   

14.
GM2-gangliosidoses are neurological disorders caused by a genetic deficiency of either the β-hexosaminidase A or the GM2 activator, a glycolipid binding protein. In a patient with an immunologically proven GM2 activator protein deficiency, A T412 → C transition (counted from A of the initiation codon) was found in the coding sequence, which results in the substitution of Arg for the normal Cys107 in the mature GM2 activator protein. The remainder of the coding sequence remained entirely normal.  相似文献   

15.
The ganglioside-activator protein is an essential cofactor for the lysosomal degradation of ganglioside GM2 (GM2) by beta-hexosaminidase A. It mediates the interaction between the water-soluble exohydrolase and its membrane-embedded glycolipid substrate at the lipid-water interphase. Mutations in the gene encoding this glycoprotein result in a fatal neurological storage disorder, the AB variant of GM2-gangliosidosis. In order to efficiently and sensitively probe the glycolipid binding and membrane activity of this cofactor, we synthesized two new fluorescent glycosphingolipid (GSL) probes, 2-NBD-GM1 and 2-NBD-GM2. Both compounds were synthesized in a convergent and multistep synthesis starting from the respective gangliosides isolated from natural sources. The added functionality of 2-aminogangliosides allowed us to introduce the chromophore into the region between the polar head group and the hydrophobic anchor of the lipid. Both fluorescent glycolipids exhibited an extremely low off-rate in model membranes and displayed very efficient resonance energy transfer to rhodamine-dioleoyl phosphoglycerol ethanolamine (rhodamine-PE) as acceptor. The binding to GM2-activator protein (GM2AP) and the degrading enzyme was shown to be unaltered compared to their natural analogues. A novel fluorescence-resonance energy transfer (FRET) assay was developed to monitor in real time the protein-mediated intervesicular transfer of these lipids from donor to acceptor liposomes. The data obtained indicate that this rapid and robust system presented here should serve as a valuable tool to probe quantitatively and comprehensively the membrane activity of GM2AP and other sphingolipid activator proteins and facilitate further structure-function studies aimed at delineating independently the lipid- and the enzyme-binding mode of these essential cofactors.  相似文献   

16.
In an attempt to discover novel adipokines, we performed proteomics analyses using culture medium from differentiated 3T3-L1 adipocytes, and first identified GM2AP. The levels of GM2AP mRNA and protein were augmented by adipogenesis in cultured adipocytes and expression in adipose tissue and serum of obese mice or human subjects was found to be significantly higher than in lean counterparts. Exposure of 3T3-L1 adipocytes to GM2AP protein accelerated dissociation of insulin receptor-beta (IRβ) from caveolin-1, and interrupted insulin signal transduction. Abrogation of GM2AP function by specific antibodies augmented glucose uptake. Furthermore, treatment of rat pheochromocytoma PC12 NS1 cells with GM2AP impaired NGF signal transduction. Taken together, these results provide novel insights into the physiological functions of GM2AP in obesity.  相似文献   

17.
The GM2-activator protein (GM2AP) is a small non-enzymatic cofactor assisting the enzyme beta-hexosaminidase A in the lysosomal degradation of ganglioside GM2. Mutations in the gene encoding this glycoprotein lead to a fatal neurological disorder, the AB variant of GM2-gangliosidoses. In this paper, we describe the overexpression of GM2AP in Sf21 cells using both the baculovirus expression vector system (BEVS) and a non-lytic, plasmid-based insect cell expression system (InsectSelect). For the BEVS, the cDNA encoding human GM2AP-preproprotein was cloned in the expression vector pAcMP3. The recombinant virus generated by cotransfection with linearized baculovirus DNA was used to infect Sf21 cells. For the non-lytic expression system, the cDNA of GM2AP was inserted into the vector pIZ/V5-His, which was used for the constitutive expression in stably transformed Sf21 cells. As it was shown by immunoblot analysis of the cell culture supernatant, in both expression systems the GM2AP precursor protein was efficiently secreted into the medium. Following expression in the BEVS, the GM2AP was purified by sequential chromatography on Ni-NTA-agarose and Con A-Sepharose, resulting in a yield of up to 9 mg purified protein from 1L of cell culture supernatant. Following expression in stably transformed insect cells, the secreted protein was first concentrated by cation-exchange and purified by metal-ion affinity chromatography, with a yield of 0.1 mg/L cell culture supernatant. The biological activity of the recombinant protein was demonstrated by its ability to stimulate the hexosaminidase A-catalyzed degradation of ganglioside GM2, and the homogeneity and glycosylation were assessed by ESI-TOF mass spectrometry. While the protein expression in the BEVS led to partly glycosylated and partly non-glycosylated protein, the stably transformed cells produced only glycosylated protein. In both expression systems, the glycosylation was found to be identical and corresponded to the structure (GlcNAc)(2)Fuc(Man)(3).  相似文献   

18.
Ganglioside GM2, 3H-labeled in the sphingoid base, was added to the culture medium of normal and GM2 gangliosidosis fibroblasts. Ganglioside was found to adsorb rapidly to the cell surface, most of it could however be removed by trypsination. The trypsin-resistant incorporation was about 10 nmol/mg cell protein, after 48 h. The rates of adsorption and incorporation depended strongly on the concentration of fetal calf serum in the medium, higher serum concentrations being inhibitory. After various incubation times, the lipids were extracted, separated by thin-layer chromatography and visualized by fluorography. In normal cells a variety of degradation products as well as sphingomyelin was found whereas in GM2 gangliosidosis cells, only trace amounts of such products (mainly GA2) were found. In contrast, the higher gangliosides GM1 and GD1a were formed in comparable amounts (2.2-3.6% of total radioactivity after 92 h) in normal and pathologic cell lines. Supplementation of cells from GM2 gangliosidosis, variant AB, with purified GM2-activator protein restored ganglioside GM2 degradation to almost normal rates but had no effect on its glycosylation to gangliosides GM1 and GD1a. From these results we conclude that the synthesis of higher gangliosides from incorporated GM2 can occur by direct glycosylation and not only via lysosomal degradation and resynthesis from [3H]sphinganine-containing degradation products. Preliminary studies with subcellular fractionation after various times of [3H]ganglioside incorporation indicated biphasic kinetics for the net transport of membrane-inserted ganglioside to lysosomes, compatible with the notion that a portion of the glycolipids can also escape from secondary lysosomes and migrate to Golgi compartment or cell surface.  相似文献   

19.
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.  相似文献   

20.
The alpha- and/or beta-subunits of human beta-hexosaminidase A (alphabeta) and B (betabeta) are approximately 60% identical. In vivo only beta-hexosaminidase A can utilize GM2 ganglioside as a substrate, but requires the GM2 activator protein to bind GM2 ganglioside and then interact with the enzyme, placing the terminal GalNAc residue in the active site of the alpha-subunit. A model for this interaction suggests that two loop structures, present only in the alpha-subunit, may be critical to this binding. Three amino acids in one of these loops are not encoded in the HEXB gene, while four from the other are removed posttranslationally from the pro-beta-subunit. Natural substrate assays with forms of hexosaminidase A containing mutant alpha-subunits demonstrate that only the site that is removed from the beta-subunit during its maturation is critical for the interaction. Our data suggest an unexpected biological role for such proteolytic processing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号