首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Phylogenetic heterogeneity across Pseudomonas genus is complemented by its diverse genome architecture enriched by accessory genetic elements (plasmids, transposons, and integrons) conferring resistance across this genus. Here, we sequenced a stress tolerant genotype i.e. Pseudomonas sp. strain RL isolated from a hexachlorocyclohexane (HCH) contaminated pond (45 mg of total HCH g−1 sediment) and further compared its gene repertoire with 17 reference ecotypes belonging to P. stutzeri, P. mendocina, P. aeruginosa, P. psychrotolerans and P. denitrificans, representing metabolically diverse ecosystems (i.e. marine, clinical, and soil/sludge). Metagenomic data from HCH contaminated pond sediment and similar HCH contaminated sites were further used to analyze the pan-genome dynamics of Pseudomonas genotypes enriched across increasing HCH gradient.

Results

Although strain RL demonstrated clear species demarcation (ANI ≤ 80.03%) from the rest of its phylogenetic relatives, it was found to be closest to P. stutzeri clade which was further complemented functionally. Comparative functional analysis elucidated strain specific enrichment of metabolic pathways like α-linoleic acid degradation and carbazole degradation in Pseudomonas sp. strain RL and P. stutzeri XLDN-R, respectively. Composition based methods (%codon bias and %G + C difference) further highlighted the significance of horizontal gene transfer (HGT) in evolution of nitrogen metabolism, two-component system (TCS) and methionine metabolism across the Pseudomonas genomes used in this study. An intact mobile class-I integron (3,552 bp) with a captured gene cassette encoding for dihydrofolate reductase (dhfra1) was detected in strain RL, distinctly demarcated from other integron harboring species (i.e. P. aeruginosa, P. stutzeri, and P. putida). Mobility of this integron was confirmed by its association with Tnp21-like transposon (95% identity) suggesting stress specific mobilization across HCH contaminated sites. Metagenomics data from pond sediment and recently surveyed HCH adulterated soils revealed the in situ enrichment of integron associated transposase gene (TnpA6100) across increasing HCH contamination (0.7 to 450 mg HCH g−1 of soil).

Conclusions

Unlocking the potential of comparative genomics supplemented with metagenomics, we have attempted to resolve the environment and strain specific demarcations across 18 Pseudomonas gene complements. Pan-genome analyses of these strains indicate at astoundingly diverse metabolic strategies and provide genetic basis for the cosmopolitan existence of this taxon.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1488-2) contains supplementary material, which is available to authorized users.  相似文献   

2.
Pseudomonas is a highly versatile bacterium at the species level with great ecological significance. These genetically and metabolically diverse species have undergone repeated taxonomic revisions. We propose a strategy to identify Pseudomonas up to species level, based on the unique features of their 16S rDNA (rrs) gene sequence, such as the frame work of sequences, sequence motifs and restriction endonuclease (RE) digestion patterns. A species specific phylogenetic framework composed of 31 different rrs sequences, allowed us to segregate 1,367 out of 2,985 rrs sequences of this genus, which have been classified at present only up to genus (Pseudomonas) level, as follows: P. aeruginosa (219 sequences), P. fluorescens (463 sequences), P. putida (347 sequences), P. stutzeri (197 sequences), and P. syringae (141 sequences). These segregations were validated by unique 30–50 nucleotide long motifs and RE digestion patterns in their rrs. A single gene thus provides multiple makers for identification and surveillance of Pseudomonas.  相似文献   

3.
Ken Okada 《FEBS letters》2009,583(2):313-319
The metabolic pathways in apicoplasts of human malaria parasites are promising drug targets. The apicomplexan parasites exhibit delayed cell death when their apicoplast is impaired, but the metabolic pathways within apicoplasts are poorly understood. A nuclear-encoded heme oxygenase (HO)-like protein with an apicoplast-targeted bipartite transit peptide was identified in the Plasmodiumfalciparum genome. Purified mature recombinant PfHO protein converted heme into bilirubin IXα as confirmed by high-performance liquid chromatography. In addition, PfHO required an iron chelator such as deferoxamine for complete activity. These observations lead to the conclusion that a novel enzymatic heme degradation system is present in human malaria parasites.  相似文献   

4.
Chlamydophila pneumoniae, the causative agent of chronic obstructive pulmonary disease (COPD), is presently the fifth mortality causing chronic disease in the world. The understanding of disease and treatment options are limited represents a severe concern and a need for better therapeutics. With the advancements in the field of complete genome sequencing and computational approaches development have lead to metabolic pathway analysis and protein-protein interaction network which provides vital evidence to the protein function and has been appropriate to the fields such as systems biology and drug discovery. Protein interaction network analysis allows us to predict the most potential drug targets among large number of the non-homologous proteins involved in the unique metabolic pathway. A computational comparative metabolic pathway analysis of the host H. sapiens and the pathogen C pneumoniae AR39 has been carried out at three level analyses. Firstly, metabolic pathway analysis was performed to identify unique metabolic pathways and non-homologous proteins were identified. Secondly, essentiality of the proteins was checked, where these proteins contribute to the growth and survival of the organism. Finally these proteins were further subjected to predict protein interaction networks. Among the total 65 pathways in the C pneumoniae AR39 genome 10 were identified as the unique metabolic pathways which were not found in the human host, 32 enzymes were predicted as essential and these proteins were considered for protein interaction analysis, later using various criteria''s we have narrowed down to prioritize ribonucleotide-diphosphate reductase subunit beta as a potential drug target which facilitate for the successful entry into drug designing.  相似文献   

5.
6.

Background

Chronic infections can profoundly affect the physiology, behavior, fitness and longevity of individuals, and may alter the organization and demography of social groups. Nosema apis and Nosema ceranae are two microsporidian parasites which chronically infect the digestive tract of honey bees (Apis mellifera). These parasites, in addition to other stressors, have been linked to increased mortality of individual workers and colony losses in this key pollinator species. Physiologically, Nosema infection damages midgut tissue, is energetically expensive and alters expression of immune genes in worker honey bees. Infection also accelerates worker transition from nursing to foraging behavior (termed behavioral maturation). Here, using microarrays, we characterized global gene expression patterns in adult worker honey bee midgut and fat body tissue in response to Nosema infection.

Results

Our results indicate that N. apis infection in young workers (1 and 2 days old) disrupts midgut development. At 2 and 7 days post-infection in the fat body tissue, N. apis drives metabolic changes consistent with energetic costs of infection. A final experiment characterizing gene expression in the fat bodies of 14 day old workers parasitized with N. apis and N. ceranae demonstrated that Nosema co-infection specifically alters conserved nutritional, metabolic and hormonal pathways, including the insulin signaling pathway, which is also linked to behavioral maturation in workers. Interestingly, in all experiments, Nosema infection did not appear to significantly regulate overall expression of canonical immune response genes, but infection did alter expression of acute immune response genes identified in a previous study. Comparative analyses suggest that changes in nutritional/metabolic processes precede changes in behavioral maturation and immune processes.

Conclusions

These genome-wide studies of expression patterns can help us disentangle the direct and indirect effects of chronic infection, and understand the molecular pathways that regulate disease symptoms.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-799) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Pseudomonas spp. MR3 was isolated from the surrounding soil of pesticide manufacturing industries of Ankleshwar, Gujarat. Under laboratory conditions these microbes were able to degrade up to 500 ppm of methyl parathion within 72 h. Genome sequencing of Pseudomonas spp. MR3 was carried out inIon Torrent (PGM), next generation sequencer. The data obtained revealed 1,268 contigs with genome size of 2.99 Mb and G + C content of 60.9 %. The draft genome sequence of strain MR3 will be helpful in studying the genetic pathways involved in the degradation of several pesticides.  相似文献   

9.
Seven fluorescent Pseudomonas spp. capable of inhibiting reproduction of Mesocriconema xenoplax have been isolated from soil sites that suppress both nematode multiplication and Peach Tree Short Life (PTSL). One of these seven strains, Pseudomonas sp. BG33R, inhibits M. xenoplax multiplication in vivo and egg hatch in vitro. Mesocriconema xenoplax populations on peach seedlings inoculated with BG33R and planted into soil-solarized field plots remained at or below the economic threshold for nematicide treatment in South Carolina for nearly 18 months. Soil solarization alone induced a shift toward a microbial community that was suppressive to nematode multiplication. Additionally, five Tn5 mutants of BG33R, lacking the ability to kill eggs, have been generated. The Tn5 insertion site in each mutant has been cloned and sequenced. DNA sequence analysis has revealed a high degree of homology to several genes of interest because of their potential involvement in the production of the egg-kill factor. These Tn5 egg-kill negative mutants also no longer produce protease or salicylic acid while producing nearly twice the amount of fluorescent siderophore as the wild type parent.  相似文献   

10.
In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species identification strategy.  相似文献   

11.
Studies of Vibrio cholerae diversity have focused primarily on pathogenic isolates of the O1 and O139 serotypes. However, autochthonous environmental isolates of this species routinely display more extensive genetic diversity than the primarily clonal pathogenic strains. In this study, genomic and metabolic profiles of 41 non-O1/O139 environmental isolates from central California coastal waters and four clinical strains are used to characterize the core genome and metabolome of V. cholerae. Comparative genome hybridization using microarrays constructed from the fully sequenced V. cholerae O1 El Tor N16961 genome identified 2,787 core genes that approximated the projected species core genome within 1.6%. Core genes are almost universally present in strains with widely different niches, suggesting that these genes are essential for persistence in diverse aquatic environments. In contrast, the dispensable genes and phenotypic traits identified in this study should provide increased fitness for certain niche environments. Environmental parameters, measured in situ during sample collection, are correlated to the presence of specific dispensable genes and metabolic capabilities, including utilization of mannose, sialic acid, citrate, and chitosan oligosaccharides. These results identify gene content and metabolic pathways that are likely selected for in certain coastal environments and may influence V. cholerae population structure in aquatic environments.  相似文献   

12.
13.

Background

Members of the thermophilic genus Geobacillus can grow at high temperatures and produce a battery of thermostable hemicellulose hydrolytic enzymes, making them ideal candidates for the bioconversion of biomass to value-added products. To date the molecular determinants for hemicellulose degradation and utilization have only been identified and partially characterized in one strain, namely Geobacillus stearothermophilus T-6, where they are clustered in a single genetic locus.

Results

Using the G. stearothermophilus T-6 hemicellulose utilization locus as genetic marker, orthologous hemicellulose utilization (HUS) loci were identified in the complete and partial genomes of 17/24 Geobacillus strains. These HUS loci are localized on a common genomic island. Comparative analyses of these loci revealed extensive variability among the Geobacillus hemicellulose utilization systems, with only seven out of 41–68 proteins encoded on these loci conserved among the HUS+ strains. This translates into extensive differences in the hydrolytic enzymes, transport systems and metabolic pathways employed by Geobacillus spp. to degrade and utilize hemicellulose polymers.

Conclusions

The genetic variability among the Geobacillus HUS loci implies that they have variable capacities to degrade hemicellulose polymers, or that they may degrade distinct polymers, as are found in different plant species and tissues. The data from this study can serve as a basis for the genetic engineering of a Geobacillus strain(s) with an improved capacity to degrade and utilize hemicellulose.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-836) contains supplementary material, which is available to authorized users.  相似文献   

14.
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.  相似文献   

15.

Background

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.

Results

To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.

Conclusions

Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.  相似文献   

16.
Pseudomonas sp. VLB120 was isolated in Stuttgart, Germany, as a styrene degrading organism. The complete genome sequence includes genomic information of solvent tolerance mechanisms, metabolic pathways for various organic compounds, and the megaplasmid pSTY.  相似文献   

17.
We have identified an operon and characterized the functions of two genes from the severe food-poisoning bacterium, Bacillus cereus subsp. cytotoxis NVH 391-98, that are involved in the synthesis of a unique UDP-sugar, UDP-2-acetamido-2-deoxyxylose (UDP-N-acetyl-xylosamine, UDP-XylNAc). UGlcNAcDH encodes a UDP-N-acetyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-GlcNAcA). The second gene in the operon, UXNAcS, encodes a distinct decarboxylase not previously described in the literature, which catalyzes the formation of UDP-XylNAc from UDP-GlcNAcA in the presence of exogenous NAD+. UXNAcS is specific and cannot utilize UDP-glucuronic acid and UDP-galacturonic acid as substrates. UXNAcS is active as a dimer with catalytic efficiency of 7 mm−1 s−1. The activity of UXNAcS is completely abolished by NADH but unaffected by UDP-xylose. A real-time NMR-based assay showed unambiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc. From the analyses of all publicly available sequenced genomes, it appears that UXNAcS is restricted to pathogenic Bacillus species, including Bacillus anthracis and Bacillus thuringiensis. The identification of UXNAcS provides insight into the formation of UDP-XylNAc. Understanding the metabolic pathways involved in the utilization of this amino-sugar may allow the development of drugs to combat and eradicate the disease.  相似文献   

18.
Staphylococcus aureus is a gram positive bacterium, responsible for both community-acquired and hospital-acquired infection, resulting in a mortality rate of 39%. 43.2% resistance to methicilin and emerging resistance to Fluroquinolone and Oxazolidinone, have evoked the necessity of the establishment of alternative and effective therapeutic approach to treat this bacteria. In this computational study, various database and online software are used to determine some specific targets of Staphylococcus aureus N315 other than those used by Penicillin, Quinolone and Oxazolidinone. For this purpose, among 302 essential proteins, 101 nonhomologous proteins were accrued and 64 proteins which are unique in several metabolic pathways of S. aureus were isolated by using metabolic pathway analysis tools. Furthermore, 7 essentially unique enzymes involved in exclusive metabolic pathways were revealed by this research, which can be potential drug target. Along with these important enzymes, 15 non-homologous proteins located on membrane were identified, which can play a vital role as potential therapeutic targets for the future researchers.  相似文献   

19.
Self-fertilization is a common mating system in plants and is known to reduce genetic diversity, increase genetic structure and potentially put populations at greater risk of extinction. In this study, we measured the genetic diversity and structure of two cedar glade endemic species, Leavenworthia alabamica and L. crassa. These species have self-incompatible (SI) and self-compatible (SC) populations and are therefore ideal for understanding how the mating system affects genetic diversity and structure. We found that L. alabamica and L. crassa had high species-level genetic diversity (He=0.229 and 0.183, respectively) and high genetic structure among their populations (FST=0.45 and 0.36, respectively), but that mean genetic diversity was significantly lower in SC compared with SI populations (SC vs SI, He for L. alabamica was 0.065 vs 0.206 and for L. crassa was 0.084 vs 0.189). We also found significant genetic structure using maximum-likelihood clustering methods. These data indicate that the loss of SI leads to the loss of genetic diversity within populations. In addition, we examined genetic distance relationships between SI and SC populations to analyze possible population history and origins of self-compatibility. We find there may have been multiple origins of self-compatibility in L. alabamica and L. crassa. However, further work is required to test this hypothesis. Finally, given their high genetic structure and that individual populations harbor unique alleles, conservation strategies seeking to maximize species-level genetic diversity for these or similar species should protect multiple populations.  相似文献   

20.
Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly‐degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by‐products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号