首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the functional role of the antagonistic producer strain Streptomyces dendra sp. nov. MSI051 in the host sponge Dendrilla nigra, hypothetical factors including the antagonistic potential of MSI051 against biofilm bacteria and a ubiquitous defense enzyme phospholipase A2 (PLA2) in host sponge as well as in bacterial symbiont MSI051 were determined. The host sponge D. nigra and associated bacterial symbiont MSI051 contained high levels of PLA2. The host sponge showed PLA2 activity to the extent of 1032 U/L, with a specific activity of 2021 U/g, and strain MSI051 showed similar activity. The findings of the present study suggest that PLA2 in the sponge-associated bacteria might have an integrated functional role in the host defense system of marine sponges. This report may be the first on the role of PLA2 activity in sponge-associated bacteria. Isolate MSI051 was a potential antagonistic producer which showed a broad spectrum of antibacterial activity. Polyketide synthase gene type II in MSI051 ultimately evidenced the antagonistic potential. Antimicrobial activity was found to be positively skewed toward biofilm bacteria. This implies a functional role of MSI051 in the protection of host sponge against fouling processes.  相似文献   

2.
Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “Micromonospora–Saccharomonospora–Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.  相似文献   

3.
Phytoremediation is considered as a novel environmental friendly technology, which uses plants to remove or immobilize heavy metals. The use of metal-resistant plant growth-promoting bacteria (PGPB) constitutes an important technology for enhancing biomass production as well as tolerance of the plants to heavy metals. In this study, we isolated twenty seven (NF1-NF27) chromium resistant bacteria. The bacteria were tested for heavy metals (Cr, Zn, Cu, Ni, Pb and Co) resistance, Cr(VI) reduction and PGPB characters (phosphate solubilization, production of IAA and siderophores). The results showed that the bacterial isolates resist to heavy metals and reduce Cr(VI), with varying capabilities. 37.14% of the isolates have the capacity of solubilizing phosphate, 28.57% are able to produce siderophores and all isolates have the ability to produce IAA. Isolate NF2 that showed high heavy metal resistance and plant growth promotion characteristics was identified by 16S rDNA sequence analysis as a strain of Cellulosimicrobium sp.. Pot culture experiments conducted under greenhouse conditions showed that this strain was able to promote plant growth of alfalfa in control and in heavy metals (Cr, Zn and Cu) spiked soils and increased metal uptake by the plants. Thus, the potential of Cellulosimicrobium sp. for both bioremediation and plant growth promotion has significance in the management of environmental pollution.  相似文献   

4.
ABSTRACT: BACKGROUND: Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. RESULTS: DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. CONCLUSIONS: This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates showed high copper resistance and additional resistance to other heavy metals. Detection of copA gene in plasmids of four Cu-resistant isolates indicates that mobile genetic elements are involved in the spreading of Cu genetic determinants in polluted environments.  相似文献   

5.
Bacterial Plasmids in Antarctic Natural Microbial Assemblages   总被引:7,自引:5,他引:2       下载免费PDF全文
Samples of psychrophilic and psychrotrophic bacteria were collected from sea ice, seawater, sediments, and benthic or ice-associated animals in McMurdo Sound, Antarctica. A total of 155 strains were isolated and tested for the presence of plasmids by DNA agarose gel electrophoresis. Thirty-one percent of the isolates carried at least one kind of plasmid. Bacterial isolates taken from sediments showed the highest plasmid incidence (42%), and isolates from seawater showed the lowest plasmid incidence (20%). Plasmids were significantly more frequent in the strains which had been first isolated from low-nutrient media (46%) than in the strains which had been isolated from high-nutrient media (25%). Multiple forms of plasmids were observed in two-thirds of the plasmid-carrying strains. A majority of the plasmids detected were estimated to have a mass of 10 megadaltons or less. Among 48 plasmid-carrying strains, 7 showed antibiotic resistance. It is concluded that bacterial plasmids are ubiquitous in natural microbial assemblages of the pristine marine ecosystem of Antarctica.  相似文献   

6.
Conjugative plasmids in multi-resistant bacterial isolates from Indian soil   总被引:2,自引:0,他引:2  
Aims:  Determination of heavy metal and antibiotic resistance and presence of conjugative plasmids in bacteria isolated from soil irrigated with wastewater.
Methods and Results:  Composite soil samples were collected from Ghaziabad, Uttar Pradesh, India. Forty different bacteria were selected from nutrient agar and characterized by morphological, cultural and biochemical tests. All the isolates were tested for their resistance to different heavy metals and antibiotics. The DNA derived from multiple metal and antibiotic-resistant bacterial isolates was PCR amplified and plasmid-specific sequences (IncP, IncN, IncW, IncQ and pMV158-type) were analysed by dot blot hybridization. All isolates gave PCR products with trfA2 and oriT primers of the IncP group. These PCR products also hybridized with the RP4-derived probes. However, the samples were negative for all the other investigated plasmids as proved by PCR and dot blots.
Conclusions:  The presence of conjugative/mobilizable IncP plasmids in the isolates indicates that these bacteria have gene-mobilizing capacity with implications for potential dissemination of introduced recombinant DNA.
Significance and Impact of the Study:  The detection of IncP plasmids in all the bacterial isolates is another proof for the prevalence of these plasmids. We propose that IncP plasmids are mainly responsible for the spread of multi-resistant bacteria in these soils.  相似文献   

7.
《Ecological Indicators》2007,7(3):511-520
Several strains of bacteria unusually highly resistant to mercury were isolated from seawater and marine sediment samples and identified by 16S rDNA sequencing and were also characterized by a battery of biochemical and morphological tests. The bacterial isolates were identified to belong to the genera Pseudomonas, Alcaligenes, Brevibacterium and Bacillus. Many of the chosen isolates were tested for growth in the presence of different heavy metals and a variety of xenobiotics. Growth curves of all six bacteria highly resistant to mercury examined for growth at different concentrations of Hg exhibited prolonged lag phase, during which time necessary physiological adaptations to toxic milieu were undergone. All the strains tested for antibiotic resistance showed little to no effect of antibiotics on their normal growth. Results of this study demonstrate the occurrence of diverse groups of marine prokaryotes capable of high tolerance to mercury with a potential to degrade a variety of toxic heavy metals and xenobiotics.  相似文献   

8.
Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resistant to mercury (BHRM) capable of growing at 25 ppm (mg L(-1)) or higher concentrations of mercury were tested during this study to evaluate their potential to detoxify Cd and Pb. Results indicate their potential of detoxification not only of Hg, but also Cd and Pb. Through biochemical and 16S rRNA gene sequence analyses, these bacteria were identified to belong to Alcaligenes faecalis (seven isolates), Bacillus pumilus (three isolates), Bacillus sp. (one isolate), Pseudomonas aeruginosa (one isolate), and Brevibacterium iodinium (one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb) as revealed by the scanning electron microscopy and energy dispersive x-ray spectroscopy, and/or precipitation as sulfide (for Pb). These bacteria removed more than 70% of Cd and 98% of Pb within 72 and 96 h, respectively, from growth medium that had initial metal concentrations of 100 ppm. Their detoxification efficiency for Hg, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.  相似文献   

9.
Three methods were examined to cultivate bacteria associated with the marine sponge Haliclona (gellius) sp.: agar plate cultures, liquid cultures, and floating filter cultures. A variety of oligotrophic media were employed, including media with aqueous and organic sponge extracts, bacterial signal molecules, and siderophores. More than 3,900 isolates were analyzed, and 205 operational taxonomic units (OTUs) were identified. Media containing low concentrations of mucin or a mixture of peptone and starch were most successful for the isolation of diversity, while the commonly used marine broth did not result in a high diversity among isolates. The addition of antibiotics generally led to a reduced diversity on plates but yielded different bacteria than other media. In addition, diversity patterns of isolates from agar plates, liquid cultures, and floating filters were significantly different. Almost 89% of all isolates were Alphaproteobacteria; however, members of phyla that are less commonly encountered in cultivation studies, such as Planctomycetes, Verrucomicrobia, and Deltaproteobacteria, were isolated as well. The sponge-associated bacteria were categorized into three different groups. The first group represented OTUs that were also obtained in a clone library from previously analyzed sponge tissue (group 1). Furthermore, we distinguished OTUs that were obtained from sponge tissue (in a previous study) but not from sponge isolates (group 2), and there were also OTUs that were not obtained from sponge tissue but were obtained from sponge isolates (group 3). The 17 OTUs categorized into group 1 represented 10 to 14% of all bacterial OTUs that were present in a large clone library previously generated from Haliclona (gellius) sp. sponge tissue, which is higher than previously reported cultivability scores for sponge-associated bacteria. Six of these 17 OTUs were not obtained from agar plates, which underlines that the use of multiple cultivation methods is worthwhile to increase the diversity of the cultivable microorganisms from sponges.  相似文献   

10.
Occurrence of tetracycline resistance genes encoding ribosomal protection proteins was examined in 151 tetracycline-resistant bacterial isolates from fish and seawater at coastal aquaculture sites in Japan and Korea. The tet(M) gene was detected in 34 Japanese and Korean isolates, which included Vibrio sp., Lactococcus garvieae, Photobacterium damsela subsp. piscicida, and unidentified Gram-positive bacteria. The majority of these bacterial isolates displayed high-level resistance with a minimum inhibitory concentrations (MICs) equal to or greater than 250 microg/ml of oxytetracycline and only four isolates had MICs less than 31.3 microg/ml. 16S rDNA RFLP typing of tet(M)-positive Vibrio isolates suggests that these are clonal populations of the same phylotype specific to a particular location. One Vibrio clone (phylotype III), however, is widely disseminated, being detected during different sampling years, at different locations, and in different fish species in both Japan and Korea. The tet(S) gene was detected in L. garvieae from yellowtail in Japan and in Vibrio sp. from seawater in Korea. This is the first report of tet(S) occurrence in Gram-negative facultative anaerobes. These results suggest that tet(M) and tet(S) genes are present in fish intestinal and seawater bacteria at aquaculture sites and could be an important reservoir of tetracycline resistance genes in the marine environment.  相似文献   

11.
Sixty-two aerobic bacterial strains isolated from the unproductive dystrophic Lake Skärshultsjön (South Sweden) were screened for plasmids. The lake is considered to be an extreme environment because of its high concentration of persistent but nontoxic humic compounds. One-third of the isolates harbored multiple plasmids usually of similar high molecular weights (>25 Mdal). The plasmid-bearing strains were members of the common aquatic taxaPseudomonas spp.,Acinetobacter sp.,Alcaligenes sp.,Aeromonas/Vibrio group, andEnterobacteriaceae (taxonomy is tentative). The majority of isolates displayed multiple resistance to antibiotics and heavy metals. Some of them were capable of degrading aromatic compounds. Three isolates were chosen for curing experiments. Only strain S-68, anAlcaligenes sp., could be cured of one of its two plasmids. It harbored the two cryptic plasmids pQQ32 and pQQ70 of 32 and ca. 70 Mdal, and the latter was segregated during ethidium bromide treatment. Parental strain S-68 was capable of degrading some of nonchlorinated phenolic compounds and displayed resistance to a broad spectrum of antibiotics and the heavy metals Co2+, Ni2+, Zn2+, Cd2+, and Hg2+. Derivative strain S-68-41 lost its resistance to nickel, suggesting segregated plasmid PQQ70 coded for nickel resistance. Transformation experiments to restore nickel resistance in the cured derivative strain were not successful.  相似文献   

12.
海绵是最原始的一类后生动物,已被作为海洋活性化合物的重要来源之一,其独特的孔状结构使其成为许多海洋微生物的优良宿主。近年来国内对海绵及其共附生微生物的研究主要集中在它们产生的活性物质方面,但对海绵共附生微生物的分布、多样性及其对宿主海绵作用的研究鲜有报道,就国内外研究进展进行了综述。  相似文献   

13.
Li CQ  Liu WC  Zhu P  Yang JL  Cheng KD 《Microbial ecology》2011,62(4):800-812
Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges. Overall, 300 bacterial isolates were cultivated, and a total of 62 operational taxonomic units (OTUs) were identified from these isolates by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing of the 16S rRNA genes. Approximately 1,000 16S rRNA gene clones were obtained by the cultivation-independent method. A total of 310 clones were randomly selected for RFLP analysis, from which 33 OTUs were acquired by further DNA sequencing and chimera checking. A total of 12 cultured OTUs (19.4% of the total cultured OTUs) and 13 uncultured OTUs (39.4% of the total uncultured OTUs) had low sequence identity (≤97%) with their closest matches in GenBank and were probably new species. Our data provide strong evidence for the presence of a diverse variety of unidentified bacteria in the marine sponge G. carnosa. A relatively high proportion of the isolates exhibited antimicrobial activity, and the deferred antagonism assay showed that over half of the active isolates exhibited a much stronger bioactivity when grown on medium containing seawater. In addition to demonstrating that the sponge-associated bacteria could be a rich source of new biologically active natural products, the results may have ecological implications. This study expands our knowledge of the diversity of sponge-associated bacteria and contributes to the growing database of the bacterial communities within sponges.  相似文献   

14.
Sponges are host to extremely diverse bacterial communities, some of which appear to be spatiotemporally stable, though how these consistent associations are assembled and maintained from one sponge generation to the next is not well understood. Here we report that a diverse group of microbes, including both bacteria and archaea, is consistently present in aggregates within embryos of the tropical sponge Corticium sp. The major taxonomic groups represented in bacterial 16S rRNA sequences amplified from the embryos are similar to those previously described in a variety of marine sponges. Three selected bacterial taxa, representing proteobacteria, actinobacteria, and a clade including recently described sponge-associated bacteria, were tested and found to be present in all adult samples tested over a 3-year period and in the embryos throughout development. Specific probes were used in fluorescence in situ hybridization to localize cells of the three types in the embryos and mesohyl. This study confirms the vertical transmission of multiple, phylogenetically diverse microorganisms in a marine sponge, and our findings lay the foundation for future work on exploring vertical transmission of specific, yet diverse, microbial assemblages in marine sponges.  相似文献   

15.
Sponges are host to extremely diverse bacterial communities, some of which appear to be spatiotemporally stable, though how these consistent associations are assembled and maintained from one sponge generation to the next is not well understood. Here we report that a diverse group of microbes, including both bacteria and archaea, is consistently present in aggregates within embryos of the tropical sponge Corticium sp. The major taxonomic groups represented in bacterial 16S rRNA sequences amplified from the embryos are similar to those previously described in a variety of marine sponges. Three selected bacterial taxa, representing proteobacteria, actinobacteria, and a clade including recently described sponge-associated bacteria, were tested and found to be present in all adult samples tested over a 3-year period and in the embryos throughout development. Specific probes were used in fluorescence in situ hybridization to localize cells of the three types in the embryos and mesohyl. This study confirms the vertical transmission of multiple, phylogenetically diverse microorganisms in a marine sponge, and our findings lay the foundation for future work on exploring vertical transmission of specific, yet diverse, microbial assemblages in marine sponges.  相似文献   

16.
Biodiversity is fundamental to both eukaryote and prokaryote ecology, yet investigations of diversity often differ markedly between the two disciplines. Host specificity - the association of organisms with only a few (specialism) or many (generalism) host species - is recognized within eukaryote ecology as a key determinant of diversity. In contrast, its implications for microbial diversity have received relatively little attention. Here we explore the relationship between microbial diversity and host specificity using marine sponge-bacteria associations. We used a replicated, hierarchical sampling design and both 16S rDNA- and rpoB-based denaturing gradient gel electrophoresis (DGGE) to examine whether three co-occurring sponges from temperate Australia -Cymbastela concentrica, Callyspongia sp. and Stylinos sp. - contained unique, specialized communities of microbes. Microbial communities varied little within each species of sponge, but variability among species was substantial. Over five seasons, the microbial community in C. concentrica differed significantly from other sponges, which were more similar to seawater. Overall, three types of sponge-associated bacteria were identified via 16S rDNA sequencing of excised DGGE bands: 'specialists'- found on only one host species, 'sponge associates'- found on multiple hosts but not in seawater, and 'generalists' from multiple hosts and seawater. Analogous to other high diversity systems, the degree of specificity of prokaryotes to host eukaryotes could have a potentially significant effect on estimates of marine microbial diversity.  相似文献   

17.
根际圈在污染土壤修复中的作用与机理分析   总被引:71,自引:9,他引:62  
根际圈以植物根系为中心聚集了大量的生命物质及其分泌物,构成了极为独特的“生态修复单元”。本文叙述了根在根际圈污染土壤修复中的生理生态作用,富集、固定重金属,吸收、降解有机污染物等功能;菌根真菌对根际圈内重金属的吸收、屏障及螯合作用,对有机污染物的降解作用;根际圈内细菌对重金属的吸附与固定,对有机污染物的降解作用以及根际圈真菌和细菌的联合修复作用等,同时对可能存在的机理进行了分析,认为根际圈对污染土壤的修复作用是植物修复的重要组成部分和主要理论基础之一,并指出利用重金属超富集植物修复重金属污染土壤具有广阔的应用前景;筛选对水溶性有机污染物高吸收富集及其根 发泌能力强的特异植物,同时接种利于有机污染物降解的专性或非专性真菌和细菌可能会成为有机污染土壤植物修复研究的重要方向之一。  相似文献   

18.
ABSTRACT The marine environment is the most dynamic and most variable among the natural environments present on the globe due to its continuously changing patterns of salinity, sea surface temperature, pH, and pressure. Thus, bacteria inhabiting this environment possess the inbuilt mechanisms of adaptation necessary in such fluctuating environmental conditions, and the harboring of heavy metal–resistant genes adds to their efficiency with regard to metal remediation compared with their terrestrial counterparts. Two highly mercury-resistant isolates, one from the marine environment and another from steel industry waste, were identified as Bacillus thuringiensis PW-05 and Bacillus sp. SD-43, respectively, by 16S rRNA gene sequence analysis. When various characters of these two isolates, e.g., biochemical, morphological, antibiotic resistance, and tolerance to other heavy metals, were analyzed, they were found to share common features. However, the marine Bacillus isolate (PW-05) was found to be more capable than its terrestrial counterpart in terms of mercury volatilization capability, i.e., 94.72% in the case of PW-05 and 60.06% in the case of SD-43. Hence, marine bacteria can be used more efficiently than their terrestrial counterparts for enhanced bioremediation of mercury in contaminated envi-ronments.  相似文献   

19.
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in a wide variety of organisms including bacteria, fungi and all eukaryotic plant and animal species. MTs bind essential and non-essential heavy metals. In mammalian cells MT genes are highly inducible by many heavy metals including Zn, Cd, Hg, and Cu. Aquatic systems are contaminated by different pollutants, including metals, as a result of man's activities. Bivalve molluscs are known to accumulate high concentrations of heavy metals in their tissue and are widely used as bioindicators for pollution in marine and freshwater environments, with MTs frequently used as a valuable marker of metal contamination. We here describe the MT isoform gene expression patterns of marine and freshwater molluscs and fish species after Cd or Zn contamination. Contamination was carried out at a river site polluted by a zinc ore extraction plant or in the laboratory at low, environmentally relevant metal concentrations. A comparison for each species based on the accumulated MT protein levels often shows discrepancies between gene expression and protein level. In addition, several differences observed in the pattern of MT gene expression between mollusc and mammalian species enable us to discuss and challenge a model for the induction of MT gene expression.  相似文献   

20.
To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号