首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The South China tiger (Panther tigris amoyensis) is critically endangered with 73 remaining individuals living in captivity, all derived from six wild founders since 1963. The population shows a low level of juvenile survivorship and reproductive difficulties, and faces a huge conservation challenge. In this study, inbreeding depression and genetic diversity decline were examined by using pedigree data and 17 microsatellites. The constant B, which is related to the number of lethal equivalents, was estimated to be 0 for the offspring of noninbred parents, but was >0 for the offspring of inbred parents and for all offspring. Percentage of successfully breeding tigers inversely correlated with inbreeding level (r = −0.626, α = 0.05). Taken together, these findings suggest the population is suffering from inbreeding depression in juvenile survivorship and fecundity. No significant correlation was detectable for the mean litter size with f of either dams (r = −0.305, α = 0.46) or kittens (r = 0.105, α = 0.71), indicating litter size was not strongly subject to inbreeding depression. The average number of alleles per locus was 4.24 ± 1.03 (SE), but effective number of alleles was only 2.53 ± 0.91. Twenty-one alleles carried by early breeders at 13 loci were absent in the present breeders and potential breeders. Multilocus heterozygosity was inversely correlated with inbreeding levels (r = −0.601, α = 0.004). These findings suggest rapid allelic diversity loss is occurring in this small captive population and that heterozygosity is being lost as it becomes more inbred. Our phylogenetic analysis supports past work indicating introgression from northern Indochinese tigers in the population. As no wild representatives of the South China tiger can be added to the captive population, we may consider the alternate scenario of further introgression in the interest of countering inbreeding depression and declining genetic diversity.  相似文献   

2.
The ultimate goal of the Mexican gray wolf Canis lupus baileyi captive management program is reintroduction of healthy individuals into wild habitats. To this end, zoo population managers work to provide not only for the physical well-being but also for the genetic health of these animals. However, the very limited genetic founder base, exacerbated by breeding within three distinct lineages, resulted in very high coefficients of inbreeding. Because support for measurable levels of inbreeding depression in the captive wolf population, as defined by reductions in common fitness measures such as juvenile survival or reproductive success, has been weak, we investigated the potential effects on male reproductive capacity. We analyzed semen samples from wolves from all three lineages and compared them with samples from subsequent lineage crosses and from generic gray wolves. We not only found a significant effect of inbreeding on sperm quality but we related both inbreeding and sperm quality to reproductive success. Samples from male offspring of lineage crosses, with inbreeding coefficients of zero were similar in quality to those from generic gray wolves. However, samples from a limited number of offspring from back-crosses were of extremely poor quality. Although it is reassuring that sperm quality was so much improved in male offspring of lineage crosses, the concomitant reduction in inbreeding coefficient does not eliminate the potentially deleterious alleles. Our results demonstrate that sperm quality is an important indicator of fertility and reproductive success in Mexican wolves. In addition, our data lend further support to the presence of inbreeding depression in this taxon.  相似文献   

3.
For a number of decades, the lesser white-fronted goose (Anser erythropus) has been almost-absent from the Fennoscandian fauna and has a current population size of only about 60 breeding pairs, with fewer than 10 pairs in Sweden. During the period 1981–1991 more than 200 young have been reintroduced in northern Sweden. However, the origin and possible relatedness of lesser white-fronted individuals were unknown when the breeding program started. We have used DNA fingerprinting to assess the similarity of 18 individuals, i.e., the entire captive population used for breeding in 1991 and about 60% of the captive population used in 1981–1991. Minisatellite probe 33.15 provided an index for an average similarity of 0.39 between the mates of the 12 breeding pairs used for producing offspring for reintroduction. This is a higher similarity than in natural populations of birds in general but lower than in populations that have passed through serious population bottlenecks. Individuals originating from different breeders are more dissimilar than those from the same breeder. However, the close relationships (similarity, 0.5–0.6) found in a group of five individuals from different breeders show that selecting individuals from different breeding groups is not sufficient to prevent mating between closely related individuals.  相似文献   

4.
Tawny owl reproduction and offspring sex ratios have been considered to depend on the abundance of small voles. We studied reproductive performance (laying date, clutch and brood size) during 1995–2003 and offspring sex ratios from 1999 to 2003 in relation to the abundance of small voles and food delivered to the nest in a tawny owl population in southern Finland. Abundance of small voles (field and bank voles) was based on trappings in the field, and estimates of food delivery was based on diet analysis of food remains in the nest boxes. In this population, reproductive output was not related to the abundance of small voles. Analysis of food delivered to the nest showed that the prey weight per offspring varied more than twofold between years and revealed that this difference was mainly related to the proportion of water voles in the diet. Only the number of water voles correlated with laying dates. Offspring sex ratios were weakly male biased (55%) but did not differ from parity. Sex ratios were not related to the abundance of small voles, and we found no evidence that parents delivered more food to nests with proportionally more offspring of the larger (female) sex. Our results underline the notion that populations may differ in their sex allocation pattern, and suggest such differences may be due to diet.  相似文献   

5.
Inbreeding mating systems are uncommon because of inbreeding depression. Mating among close relatives can evolve, however, when outcrossing is constrained. Social spiders show obligatory mating among siblings. In combination with a female‐biased sex ratio, sib‐mating results in small effective populations. In such a system, high genetic homozygosity is expected, and drift may cause population divergence. We tested the effect of outcrossing in the social spider Stegodyphus dumicola. Females were mated to sib‐males, to a non‐nestmate within the population, or to a male from a distant population, and fitness traits of F1s were compared. We found reduced hatching success of broods from between‐population crosses, suggesting the presence of population divergence at a large geographical scale that may result in population incompatibility. However, a lack of a difference in offspring performance between inbred and outbred crosses indicates little genetic variation between populations, and could suggest recent colonization by a common ancestor. This is consistent with population dynamics of frequent colonizations by single sib‐mated females of common origin, and extinctions of populations after few generations. Although drift or single mutations can lead to population divergence at a relatively short time scale, it is possible that dynamic population processes homogenize these effects at longer time scales.  相似文献   

6.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

7.
Supportive breeding is being increasingly usedas a measure to reduce the short-termprobability of extinction of populations withhighly reduced abundance relative to historicallevels. In this paper, we provide a conceptualframework and analytical tools to computechanges in inbreeding coefficient (F) in thecase of supportive breeding over any number ofgenerations. The dynamics of inbreedingcoefficients were investigated by means of asystem of recurrence equations. We focussed onquantifying the dynamics of F for specificcombinations of parameter values in terms ofthe effects of captive population census size,refreshment rate of breeders in captivity,scale of supplementation program, and migrationrate. We observed that supplementation did notalways result in substantial inbreedingincrement and several conditions loweredoverall inbreeding relative to controlsituations without supplementation. The censussize of captive populations was the single mostimportant controllable parameter determiningthe genetic consequences of supportivebreeding. While the proportion of captivebreeders brought into captivity from the wildbore a complex relationship to inbreedingcoefficient dynamics, the results indicatedthat managers should generally aim at highrefreshment rates (that is, large proportionsof their captive stock originating from thewild). This is especially important when asmall captive population is expected tocontribute large numbers of breeders to thesupplemented population. The analysis alsoshowed how supplemented populations connectedto a large metapopulation through gene flowrecover from the genetic risks of inbreedingdue to supportive breeding program more quicklythan isolated populations. The results of thisstudy join those of an increasing number ofinvestigations showing that supportive breedingdoes not always increase inbreeding, and mayeven decrease it in several circumstances.However, supportive breeding systems arecomplex, and results such as presented hereshould not be used in isolation, but inconsideration of other issues such as theconsequences on long-term fitness of wildindividuals.  相似文献   

8.
Sexually reproducing organisms face a strong selective pressure to find a mate and ensure reproduction. An important criterion during mate‐selection is to avoid closely related individuals and subsequent potential fitness costs of resulting inbred offspring. Inbreeding avoidance can be active through kin recognition during mate choice, or passive through differential male and female‐biased sex ratios, which effectively prevents sib‐mating. In addition, sex allocation, or the resources allotted to male and female offspring, can impact mating and reproductive success. Here, we investigate mate choice, sex ratios, and sex allocation in dispersing reproductives (alates) from colonies of the termite Cubitermes tenuiceps. Termites have a short time to select a mate for life, which should intensify any fitness consequences of inbreeding. However, alates did not actively avoid inbreeding through mate choice via kin recognition based on genetic or environmental cues. Furthermore, the majority of colonies exhibited a female‐biased sex ratio, and none exhibited a male‐bias, indicating that differential bias does not reduce inbreeding. Sex allocation was generally female‐biased, as females also were heavier, but the potential fitness effect of this costly strategy remains unclear. The bacterium Wolbachia, known in other insects to parasitically distort sex allocation toward females, was present within all alates. While Wolbachia is commonly associated with termites, parasitism has yet to be demonstrated, warranting further study of the nature of the symbiosis. Both the apparent lack of inbreeding avoidance and potential maladaptive sex allocation implies possible negative effects on mating and fitness.  相似文献   

9.
The distances that individuals disperse, from their natal site to the site of first breeding and between breeding sites, have important consequences for the dynamics and genetic structure of a population. Nearly all previous studies on dispersal have the problem that, because the study area encompassed only a part of the population, emigration may have been confounded with mortality. As a result long-distance dispersers may have been overlooked and dispersal data biased towards short distances. By studying a virtually closed population of Seychelles warblers Acrocephalus sechellensis we obtained almost unbiased results on several aspects of dispersal. As in the majority of other avian species, natal dispersal distance was female biased in the Seychelles warbler. Female offspring also forayed further from the natal territory in search of breeding vacancies than male offspring. The sex bias in natal dispersal distance did, however, depend on local breeding density. In males, dispersal distance decreased as the number of territories bordering the natal territory increased, while in females, dispersal distance did not vary with local density. Dispersal by breeders was rare and, unlike in most species, distances did not differ between the sexes. We argue that our results favour the idea that the sex bias in natal dispersal distance in the Seychelles warbler is due to inbreeding avoidance and not resource competition or intrasexual competition for mates.  相似文献   

10.
Summary Species of parasitic Hymenoptera that manifest female-biased sex ratios and whose offspring mate only with the offspring of the natal patch are assumed to have evolved biased sex ratios because of Local Mate Competition (LMC). Off-patch matings, i.e. outcrossing, are inconsistent with the conditions favouring biased sex ratios because they foster a mating structure approaching panmixia. Such a mating structure favours parents who invest equally in daughters and sons, assuming the production of each sex is of equal cost.Pachycrepoideus vindemiae (Rondani) is a solitary pupal parasitoid of patchily distributed frugivorousDrosophila, whose offspring manifest a female-biased sex ratio. Thus this species appears to manifest a population structure and progeny sex ratio consistent with LMC. However, preliminary observations and subsequent greenhouse experiments suggest that the males participate in off-patch matings and that this propensity is unlikely to be an experimental artefact. FemaleP. vindemiae dispersed from patches in which either the males were lacking (12% of the emigrant females), both resident (sibling) and immigrant males were present (23% of the females), only immigrant males were present (14% of the females), or their opportunity to mate could not be determined (14% of the females). Of the 12% that emigrated from a patch lacking males, an estimated 7% mated at an oviposition site and 5% remained unmated, presumably because they arrived at an oviposition site that lacked males before they were dissected to determine whether they were inseminated. Thus the degree of bias in the sex ratios of the progeny (18% males), coupled with the suggested outcrossing potential from the experiments (26–37%), is inconsistent with the assumptions of LMC or variants of it, i.e. asynchronous brood maturation. Thus the explanation for a biased sex ratio in the offspring ofP. vindemiae remains a conundrum. More importantly,P. vindemiae does not appear to be an isolated example.  相似文献   

11.
Mechanisms reducing inbreeding are thought to have evolved owing to fitness costs of breeding with close relatives. In small and isolated populations, or populations with skewed age- or sex distributions, mate choice becomes limited, and inbreeding avoidance mechanisms ineffective. We used a unique individual-based dataset on moose from a small island in Norway to assess whether inbreeding avoidance was related to population structure and size, expecting inbreeding avoidance to be greater in years with larger populations and even adult sex ratios. The probability that a potential mating event was realized was negatively related to the inbreeding coefficient of the potential offspring, with a stronger relationship in years with a higher proportion or number of males in the population. Thus, adult sex ratio and population size affect the degree of inbreeding avoidance. Consequently, conservation managers should aim for sex ratios that facilitate inbreeding avoidance, especially in small and isolated populations.  相似文献   

12.
 Strawberry genotypes selected for superior fruit yield or chosen at random from first-generation self, full-sib, and half-sib populations were crossed to provide second-generation inbred progenies and composite cross-fertilized control populations. Mean yields for inbred offspring from crosses among selected parents exceeded those from the offspring of unselected parents by 87%, 23%, and 37% for self, full-sib, and half-sib populations, respectively; yields for offspring from unrelated crosses among selected parents were 54% larger than those for crosses among unselected parents. Selection for yield also resulted in significant correlated response for fruit number and plant diameter. Mean yields for second-generation half-sib and full-sib offspring from selected parents were greater than those for offspring from the unselected but non-inbred control population. This suggests that selection can be a powerful force in counteracting most of the inbreeding depression expected in cross-fertilized strawberry breeding programs. Selection treatment× inbreeding rate interactions were non-significant for all traits; thus, selection among partially inbred offspring did not have a large effect on the rate of genetic progress. Differential realized selection intensity among individuals with differing levels of homozygosity accumulated due to inbreeding is suggested as the most likely explanation for the absence of association between pedigree inbreeding coefficients and cross performance detected previously in strawberry. Received: 21 July 1996 / Accepted: 7 March 1997  相似文献   

13.
The genealogy and genetic viability of reintroduced Yellowstone grey wolves   总被引:4,自引:1,他引:3  
The recovery of the grey wolf in Yellowstone National Park is an outstanding example of a successful reintroduction. A general question concerning reintroduction is the degree to which genetic variation has been preserved and the specific behavioural mechanisms that enhance the preservation of genetic diversity and reduce inbreeding. We have analysed 200 Yellowstone wolves, including all 31 founders, for variation in 26 microsatellite loci over the 10-year reintroduction period (1995-2004). The population maintained high levels of variation (1995 H(0) = 0.69; 2004 H(0) = 0.73) with low levels of inbreeding (1995 F(IS) = -0.063; 2004 F(IS) = -0.051) and throughout, the population expanded rapidly (N(1995) = 21; N(2004) = 169). Pedigree-based effective population size ratios did not vary appreciably over the duration of population expansion (1995 N(e)/N(g) = 0.29; 2000 N(e)/N(g) = 0.26; 2004 N(e)/N(g) = 0.33). We estimated kinship and found only two of 30 natural breeding pairs showed evidence of being related (average r = -0.026, SE = 0.03). We reconstructed the genealogy of 200 wolves based on genetic and field data and discovered that they avoid inbreeding through a wide variety of behavioural mechanisms including absolute avoidance of breeding with related pack members, male-biased dispersal to packs where they breed with nonrelatives, and female-biased subordinate breeding. We documented a greater diversity of such population assembly patterns in Yellowstone than previously observed in any other natural wolf population. Inbreeding avoidance is nearly absolute despite the high probability of within-pack inbreeding opportunities and extensive interpack kinship ties between adjacent packs. Simulations showed that the Yellowstone population has levels of genetic variation similar to that of a population managed for high variation and low inbreeding, and greater than that expected for random breeding within packs or across the entire breeding pool. Although short-term losses in variation seem minimal, future projections of the population at carrying capacity suggest significant inbreeding depression will occur without connectivity and migratory exchange with other populations.  相似文献   

14.
D E Wolf  J A Satkoski  K White  L H Rieseberg 《Genetics》2001,159(3):1243-1257
Datisca glomerata is an androdioecious plant species containing male and hermaphroditic individuals. Molecular markers and crossing data suggest that, in both D. glomerata and its dioecious sister species D. cannabina, sex is determined by a single nuclear locus, at which maleness is dominant. Supporting this conclusion, an amplified fragment length polymorphism (AFLP) is heterozygous in males and homozygous recessive in hermaphrodites in three populations of the androdioecious species. Additionally, hermaphrodite x male crosses produced 1:1 sex ratios, while hermaphrodite x hermaphrodite crosses produced almost entirely hermaphroditic offspring. No perfectly sex-linked marker was found in the dioecious species, but all markers associated with sex mapped to a single linkage group and were heterozygous in the male parent. There was no sex-ratio heterogeneity among crosses within D. cannabina collections, but males from one collection produced highly biased sex ratios (94% females), suggesting that there may be sex-linked meiotic drive or a cytoplasmic sex-ratio factor. Interspecific crosses produced only male and female offspring, but no hermaphrodites, suggesting that hermaphroditism is recessive to femaleness. This comparative approach suggests that the hermaphrodite form arose in a dioecious population from a recessive mutation that allowed females to produce pollen.  相似文献   

15.
Blue mussels of the genus Mytilus form extensive hybrid zones in the North Atlantic and elsewhere where the distributions of different species overlap. Mytilus species transmit both maternal and paternal mtDNA through egg and sperm, respectively, a process known as doubly uniparental inheritance (DUI), and some females produce offspring with extremely biased sex ratios. These two traits have been shown to be linked and maternally controlled, with sex determination involving nuclear–cytoplasmic interactions. Hybridization has been shown to disrupt DUI mitochondrial inheritance and sex ratio bias; however, the effect of hybridization on reproductive fitness has not previously been examined. We investigated this effect in M. edulis × M. trossulus crosses through histological examination of mature F1 progeny, and spawning of F1 hybrids to monitor survival of their progeny through to the D stage of larval development. For progeny produced from mothers with a strong bias toward female offspring (often 100%) in pure-bred crosses, there was a clear breakdown in female dominance of progeny and significantly more hermaphrodites in the hybrid crosses produced from sperm with the M-tr1 mitotype. We also found significant sex-specific differences among hybrid progeny, with females producing normal eggs while males and hermaphrodites evidenced impaired gonadal development with significantly greater numbers of Sertoli cells, phagocytic hemocytes, and degenerating germ cells, all associated with gonad resorption. Males from crosses where DUI was disrupted and where male progeny were homoplasmic for the female mtDNA were the most severely compromised. Allelic incongruity between maternal and paternal mitotypes in hybrid crosses was associated with significant disruption of male gonadal development.  相似文献   

16.
Maintaining genetic diversity within captive breeding populations is a key challenge for conservation managers. We applied a multi-generational genetic approach to the captive breeding program of an endangered Australian freshwater fish, the southern pygmy perch (Nannoperca australis). During previous work, fish from the lower Murray-Darling Basin were rescued before drought exacerbated by irrigation resulted in local extinction. This endemic lineage of the species was captive-bred in genetically designed groups, and equal numbers of F1 individuals were reintroduced to the wild with the return of favourable habitat. Here, we implemented a contingency plan by continuing the genetic-based captive breeding in the event that a self-sustaining wild population was not established. F1 individuals were available as putative breeders from the subset of groups that produced an excess of fish in the original restoration program. We used microsatellite-based parentage analyses of these F1 fish to form breeding groups that minimized inbreeding. We assessed their subsequent parental contribution to F2 individuals and the maintenance of genetic diversity. We found skewed parental contribution to F2 individuals, yet minimal loss of genetic diversity from their parents. However, the diversity was substantially less than that of the original rescued population. We attribute this to the unavoidable use of F1 individuals from a limited number of the original breeding groups. Alternative genetic sources for supplementation or reintroduction should be assessed to determine their suitability. The genetic fate of the captive-bred population highlights the strong need to integrate DNA-based tools for monitoring and adaptive management of captive breeding programs.  相似文献   

17.
Progenies from first-generation self, half-sib, full-sib, and cross fertilizations were generated to evaluate the magnitude of inbreeding depression for vegetative and production traits in strawberry. Tests were conducted to determine the linearity of trait mean depression with inbreeding rate (F) over this range of inbreeding values, as an indication of the presence of non-additive epistasis. A control population, for which a similar range of coancestry had accumulated over several cycles of breeding and selection, was also generated to compare the consequences of ancestral and current-generation inbreeding. Trait means for crosses among current-generation half-sibs, full-sibs, and selfs were 2–17%, 3–12%, and 14–45% lower than for unrelated crosses among the same set of parents, respectively. Linear regression of progeny means on current generation F was significantly negative for all traits and explained 17–44% of the variance among progeny means. Mean depression was largely linear over the range of inbreeding rates tested in this population, indicating the absence of epistasis for the traits evaluated. Conversely, (F) regressions of progeny means on pedigree inbreeding coefficients, where coancestry had accumulated over several cycles of breeding and selection, were uniformly non-significant and explained 0–10% of the variance among cross means. Further, multiple regression of progeny means for current-generation relatives on pedigree F failed to improve fit significantly over regression on current-generation F alone for all traits. Together, these results suggest that pedigree inbreeding coefficients are poor predictors of changes in homozygosity when populations are developed through multiple cycles of breeding and selection. They also imply that inbreeding depression will be of minor importance for strawberry breeding populations managed with adequate population sizes and strong directional selection.  相似文献   

18.
Michaels HJ  Shi XJ  Mitchell RJ 《Oecologia》2008,154(4):651-661
We investigated the relationships among population size, offspring performance, and inbreeding depression (δ) in Lupinus perennis by examining the effect of population size category (large vs. small) on seed production and offspring performance for three pollination treatments (open pollination, hand crossing and hand selfing). In each of our four pairs of populations, one member of the pair was substantially larger than the other. We then grew seeds from this factorial design (2 sizes × 4 pairs × 3 pollination treatments) in the greenhouse to investigate whether population size affects offspring performance in a common environment, and how small size affects purging of the inbreeding load. Multiplicative performance across four early life-stage components (seed production, seedling emergence, seedling survival and seedling growth) of smaller populations was not significantly lower, although biomass of seedlings declined in smaller populations. Self-pollination reduced seed production, seedling emergence and seedling growth, reflecting substantial inbreeding depression (δ = 0.404 ± 0.043). Population size categories did not consistently differ in levels of inbreeding depression, suggesting that purging of genetic load in smaller populations has been limited, and that all populations still harbor inbreeding load. We also found a significant decrease in log performance with increases in the population inbreeding coefficient. These results indicate that even in seemingly large populations, lupines are susceptible to considerable fitness declines through both inbreeding load within populations, and drift load via genetic erosion and fixation of deleterious alleles between populations.  相似文献   

19.
There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female‐biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark‐recapture approach to examine the origin and consistency of female‐biased sex ratio in four replicated introductions. We show that female‐biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark‐recapture techniques. Together with other long‐term mark‐recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio.  相似文献   

20.
? Premise of the study: Inbreeding depression is a major evolutionary force and an important topic in conservation genetics because habitat fragmentation leads to increased inbreeding in the populations of many species. Crosses between populations may restore heterozygosity, resulting in increased performance (heterosis), but may also lead to the disruption of coadapted gene complexes and to decreased performance (outbreeding depression). ? Methods: We investigated the effects of selfing and of within and between population crosses on reproduction and the performance of two generations of offspring of the declining grassland plant Saxifraga granulata (Saxifragaceae). We also subjected the first generation of offspring to a fertilization and two stress treatments (competition and defoliation) to investigate whether the effects of inbreeding and interpopulation gene flow depend on environmental conditions. ? Key results: Inbreeding depression affected all traits in the F(1) generation (δ = 0.07-0.55), but was stronger for traits expressed late during development and varied among families. The adaptive plasticity of offspring from selfing and from interpopulation crosses in response to nutrient addition was reduced. Outbreeding depression was also observed in response to stress. Multiplicative fitness of the F(2) generation after serial inbreeding was extremely low (δ > 0.99), but there was heterosis after crossing inbred lines. Outbreeding depression was not observed in the F(2). ? Conclusions: Continuous inbreeding may drastically reduce the fitness of plants, but effects may be environment-dependent. When assessing the genetic effects of fragmentation and interpopulation crosses, the possible effects on the mean performance of offspring and on its adaptive plasticity should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号