首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this review, the different applications of flow cytometry in plant breeding are highlighted. Four main breeding related purposes can be distinguished for flow cytometry: (i) Characterisation of available plant material, including screening of possible parent plants for breeding programs as well as evaluation of population biodiversity; (ii) Offspring screening after interspecific, interploidy or aberrant crosses; (iii) Ploidy level determination after haploidization and polyploidization treatments and (iv) Particle sorting, that allows separation of plant cells based on morphological or fluorescent characteristics. An overview and discussion of these various applications indicates that flow cytometry is a relatively quick, cheap and reliable tool for many breeding related objectives.  相似文献   

2.
Unialgal cultures of the flagellate algae Cyanophora paradoxa, Haematococcus lacustris, Monomastix sp., Scherffelia dubia and Spermatozopsis similis which contained bacteria were sorted by flow cytometry to obtain axenic clonal cultures. The variables used for fluorescence-activated cell sorting (FACS) were chlorophyll autofluorescence, forward scatter and side scatter of the laser beam. To produce clonal cultures, a single cell was sorted into each culture flask. Depending on the species, about 20–30% of the sorted cultures grew successfully and at least 20% of these were axenic even if the numerical ratio betweeen bacteria and algae in the original cultures was as high as 300:1. FACS represents an effective and rapid method for the preparation of clonal and axenic cultures of microalgae.  相似文献   

3.
基于荧光激活细胞分选(FACS)技术的超高通量酶活性筛选方法是新出现的一类高通量筛选技术.它利用流式细胞仪高灵敏度、高通量的特点,能以极高的速度(108/天)对大容量酶基因文库进行筛选.FACS筛选技术的出现突破了常规筛选方法低效、耗时、费力等瓶颈问题,极大地提升了人类对大容量基因文库的探索能力,因此在新酶基因筛选、酶活性检测、酶定向进化等领域有广泛的应用潜力.综述了FACS超高通量酶活性筛选方法的最新研究进展,着重介绍了其在酶定向进化中的应用.  相似文献   

4.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

5.
Encapsulation of cells in agarose gel microdrops (GMDs) combined with fluorescence-activated cell sorting (FACS) has been used previously to analyze and recover specific mammalian, bacterial, and yeast cell populations. Recently, we have developed a method to enrich mixed bacterial populations for slow-growing microorganisms using the GMD Growth Assay combined with fluorochrome staining and flow cytometry. Here, we demonstrate the feasibility of using this experimental approach to detect clonogenic growth of individual bacteria within GMDs in less than 3 h and to separate subpopulations based on differential growth rates. We show that after sorting, organisms remain viable and can be propagated in culture for further analysis.  相似文献   

6.
Experimental and clinical studies often require highly purified cell populations. FACS is a technique of choice to purify cell populations of known phenotype. Other bulk methods of purification include panning, complement depletion and magnetic bead separation. However, FACS has several advantages over other available methods. FACS is the preferred method when very high purity of the desired population is required, when the target cell population expresses a very low level of the identifying marker or when cell populations require separation based on differential marker density. In addition, FACS is the only available purification technique to isolate cells based on internal staining or intracellular protein expression, such as a genetically modified fluorescent protein marker. FACS allows the purification of individual cells based on size, granularity and fluorescence. In order to purify cells of interest, they are first stained with fluorescently-tagged monoclonal antibodies (mAb), which recognize specific surface markers on the desired cell population (1). Negative selection of unstained cells is also possible. FACS purification requires a flow cytometer with sorting capacity and the appropriate software. For FACS, cells in suspension are passed as a stream in droplets with each containing a single cell in front of a laser. The fluorescence detection system detects cells of interest based on predetermined fluorescent parameters of the cells. The instrument applies a charge to the droplet containing a cell of interest and an electrostatic deflection system facilitates collection of the charged droplets into appropriate collection tubes (2). The success of staining and thereby sorting depends largely on the selection of the identifying markers and the choice of mAb. Sorting parameters can be adjusted depending on the requirement of purity and yield. Although FACS requires specialized equipment and personnel training, it is the method of choice for isolation of highly purified cell populations.  相似文献   

7.
精原干细胞(spermatogonial stem cells,SSCs)富集纯化是利用SSCs进行基因修饰新方法等研究的前提基础。采用免疫磁珠分选法,使用干细胞抗体CD90.2进行小鼠SSCs的纯化富集,并采用流式细胞分析法和定量PCR验证了磁珠分选效率。流式细胞分析结果:免疫磁珠分选后SSCs纯度为50.11%。荧光定量PCR检测结果:磁珠分选后支持细胞特异表达基因 GATA4 显著下调(6倍)、SSCs表达基因 GFRα-1 上调(6.5倍)、生殖干细胞特异表达基因 OCT4 极显著上调(5.9倍),3个基因相对表达量的变化说明,免疫磁珠分选效率为6倍。流式细胞分析法所产生的偏差可能是受到了未解离磁珠及SSCs本身转基因荧光的影响。  相似文献   

8.
Toxoplasma gondii oocysts are environmentally resistant and can infect virtually all warm-blooded hosts, including humans and livestock. Little is known about the biochemical basis for this resistance of oocysts, and mechanism for excystation of T. gondii sporozoites. The objective of the present study was to evaluate different methods (mechanical fragmentation, gradients, flow cytometry) to separate and purify T. gondii oocyst walls and sporocysts. Oocyst walls were successfully separated and purified using iodixanol gradients. Sporocysts were successfully separated and purified using iodixanol and Percoll gradients. Purification was also achieved by flow cytometry. Flow cytometry with fluorescence-activated cell sorting (FACS) yielded analytical quantities of oocyst walls and intact sporocysts. Flow cytometry with FACS also proved useful for quantitation of purity obtained following iodixanol gradient fractionation. Methods reported in this paper will be useful for analytical purposes, such as proteomic analysis of components unique to this life cycle stage, development of detection methods, or excystation studies.  相似文献   

9.
王丽贤  张玥  夏海容  涂然  王猛 《微生物学通报》2023,50(11):5068-5083
【背景】以流式细胞技术为代表的高通量筛选技术能够高效筛选具有目标性状的微生物工程菌株。在流式分选中微生物的粘连会造成分析数据不准确,分选纯度降低,因此快速简便的单细胞样品制备是流式检测的关键。优势菌大多是通过筛选偶联荧光蛋白的随机突变库获得,阳性率低,杂质和死细胞的自发荧光较强,容易混入分选门内造成存活率降低,亟须提高分选存活率的方法。【目的】建立一种简便的微生物流式分选的单细胞样品制备方法,并通过碘化丙啶(propidium iodide, PI)染色提高分选样品存活率。【方法】分别在大肠杆菌、枯草芽孢杆菌、谷氨酸棒状杆菌和酵母菌4种底盘细胞中探索超声波、消化酶、表面活性剂及超声-表面活性剂联合作用4种方式对单细胞制备效率的影响。提高微生物流式分选存活率,用常压室温等离子诱变(atmospheric and room temperature plasma, ARTP)技术处理含有绿色荧光蛋白(green fluorescent protein, GFP)的酿酒酵母HZ848 (简称HZ848-GFP),形成不同强度GFP文库后,按照GFP强度分选全细胞和PI染色阴性细胞的前0.5%,统计单细胞存活率。【结果】酵母细胞分散条件为:0.01% Tween-80联合超声1 min,单细胞率达到88%以上,PI染色细胞破损率<1.4%。谷氨酸棒状杆菌单细胞分散条件为:0.01% Tween-80联合超声5 min,单细胞率达到97%以上,PI染色细胞破损率<1%。分选存活率结果表明,未用PI染色的酿酒酵母分选后单细胞存活率是4.3%,用PI染色去除死细胞后再分选单细胞存活率是18.3%,后者是前者的4.3倍,且具有显著性差异。【结论】本研究为微生物流式分选建立了一套简单快捷的单细胞样品制备方法,证实了PI染色法能够显著提高分选样品存活率。  相似文献   

10.
建立了应用流式细胞仪分选植物特定类型细胞的方法。以拟南芥(Arabidopsis thaliana)Wer::GFP转基因株系为材料,用激光共聚焦显微镜鉴定GFP的表达位置,采用酶解法制备拟南芥根尖原生质体,应用流式细胞仪荧光激活细胞分选技术(FACS)分选收集GFP阳性细胞,并提取细胞的RNA。结果表明,Wer::GFP转基因株系仅在根表皮发育早期的非根毛细胞中表达GFP;利用酶解法制备的根尖原生质体数目较多;从FACS分选收集的细胞中提取的RNA质量较好,可用于研究特定类型细胞的基因表达谱。应用流式细胞仪分选拟南芥非根毛细胞的方法为研究植物特定类型细胞的基因表达谱及基因功能奠定了技术基础。  相似文献   

11.
Actinomycetes are important producers of pharmaceuticals and industrial enzymes. However, wild type strains require laborious development prior to industrial usage. Here we present a generally applicable reporter-guided metabolic engineering tool based on random mutagenesis, selective pressure, and single-cell sorting. We developed fluorescence-activated cell sorting (FACS) methodology capable of reproducibly identifying high-performing individual cells from a mutant population directly from liquid cultures. Actinomycetes are an important source of catabolic enzymes, where product yields determine industrial viability. We demonstrate 5-fold yield improvement with an industrial cholesterol oxidase ChoD producer Streptomyces lavendulae to 20.4 U g−1 in three rounds. Strain development is traditionally followed by production medium optimization, which is a time-consuming multi-parameter problem that may require hard to source ingredients. Ultra-high throughput screening allowed us to circumvent medium optimization and we identified high ChoD yield production strains directly from mutant libraries grown under preset culture conditions. Genome-mining based drug discovery is a promising source of bioactive compounds, which is complicated by the observation that target metabolic pathways may be silent under laboratory conditions. We demonstrate our technology for drug discovery by activating a silent mutaxanthene metabolic pathway in Amycolatopsis. We apply the method for industrial strain development and increase mutaxanthene yields 9-fold to 99 mg l−1 in a second round of mutant selection. In summary, the ability to screen tens of millions of mutants in a single cell format offers broad applicability for metabolic engineering of actinomycetes for activation of silent metabolic pathways and to increase yields of proteins and natural products.  相似文献   

12.
Sertoli cells play a key role in spermatogenesis by supporting the germ cells throughout differentiation. The isolation of Sertoli cells is essential to study their functions. However, the close contact of Sertoli cells with other testicular cell types and the high proliferation of contaminating cells are obstacles to obtain pure primary cultures. Current rodent Sertoli cell isolation protocols result in enriched, rather than pure Sertoli cells. Therefore, novel approaches are necessary to improve the purity of Sertoli cell primary cultures. The goal of this study is to obtain pure mouse Sertoli cells using lineage tracing and fluorescence‐activated cell sorting (FACS). We bred the Amh‐Cre mouse line with tdTomato line to generate mice constitutively expressing red fluorescence specifically in Sertoli cells. Primary cultures of Sertoli cells isolated from prepubertal mice showed that 79% of cells expressed tdTomato, as evaluated by fluorescence microscopy and flow cytometry; however, nearly all adherent cells were positive for vimentin. Most of the tomato‐negative cells expressed α‐smooth muscle actin (α‐SMA), a peritubular myoid cell marker, but double‐negative populations were also present. These findings suggest that vimentin lacks Sertoli cell‐specificity and that α‐SMA is not adequate to identify all of the contaminating cells. Upon FACS sorting; however, virtually 100% of the cells were tdTomato positive, expressed vimentin, but not α‐SMA. Prepubertal mice yielded a higher number of Sertoli cells compared to adults, but both could be adequately sorted. In conclusion, our study shows that lineage tracing and sorting is an efficient strategy for acquiring pure populations of murine Sertoli cells.  相似文献   

13.
An effective method for peptide screening of ligand-binding proteins was applied by using recombinant E. coli which is capable of expressing green fluorescent protein (GFP) and which can also express random peptides displayed on flagella of the cells. This screening method used a combination of fluorescence-activated cell sorting (FACS) and flagella display on the basis of a commercial FliTrx random peptide library for isolating the peptide-displaying clones which are able to bind Alexa 546 fluorescence-labeled cytochrome c. Flow cytometry simultaneously detected the two different fluorescence intensities, from GFP in the library and Alexa546-labeled to cytochrome c, enabling the specific clones bound to cytochrome c to be obtained from the first or second round of cell sorting. Compared with original FliTrx peptide screening system that requires repeating biopanning five times, our results suggested that detecting two different fluorescence intensities by flow cytometry is feasible for effective peptide screening.  相似文献   

14.
The phylogenetic distance between chickens and humans accounts for a strong immune response and a broader epitope coverage compared to rodent immunization approaches. Here the authors report the isolation of common light chain (cLC)-based chicken monoclonal antibodies from an anti-epidermal growth factor receptor (EGFR) immune library utilizing yeast surface display in combination with yeast biopanning and fluorescence-activated cell sorting (FACS). For the selection of high-affinity antibodies, a yeast cell library presenting cLC-comprising fragment antigen binding (Fab) fragments is panned against hEGFR-overexpressing A431 cells. The resulting cell–cell-complexes are sorted by FACS resulting in gradual enrichment of EGFR-binding Fabs in three sorting rounds. The isolated antibodies share the same light chain and show high specificity for EGFR, resulting in selective binding to A431 cells with notable EC50 values. All identified antibodies show very good aggregation propensity profiles and thermostabilities. Additionally, epitope binning demonstrates that these cLC antibodies cover a broad epitope space. Isolation of antibodies from immunized chickens by yeast cell biopanning makes an addition to the repertoire of methods for antibody library screening, paving the way for the generation of cLC-based bispecific antibodies against native mammalian receptors.  相似文献   

15.
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.  相似文献   

16.
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence.  相似文献   

17.
ESC (epidermal stem cells) play a central role in the regeneration of human epidermis. These cells are also responsible for wound healing and neoplasm formation. Efficient isolation of ESC allows their use in medicine and pharmacy as well as in basic science. Cultured keratinocytes and ESC may be used as biological dressing in burn injuries, chronic wounds and hereditary disorders. Therefore, the isolation and characterization of ESC have been goals in biomedical science. Here, we present a flow cytometric method for the isolation and analysis of human ESC candidates. The strategy presented for the isolation of ESC combines previously proposed enzymatic digestion and FACS‐sorting of the obtained cell suspension that utilizes morphological features, integrin‐β1 expression and Rh123 (Rhodamine 123) accumulation of the cells. We also performed a flow cytometric analysis of sorted cells using a cell tracer.  相似文献   

18.
流式细胞术在高等植物研究中的应用   总被引:7,自引:1,他引:6  
流式细胞术(FCM)是根据所测定的各种细胞性质的不同组合,从细胞群体中把某个亚群分选出来,并对它的功能和形态学进行研究或进一步培养分析。流式细胞术具有快速、灵敏和同时进行多参数检测等优点,对其基本原理和在高等植物中的应用进行了介绍。  相似文献   

19.
New method to characterize microbial diversity using flow cytometry   总被引:2,自引:0,他引:2  
The majority of microorganisms have yet to be cultivated and represent a vast uncharacterized and untapped resource. Here, we report the utilization of a combination of flow cytometry, cultivation, and molecular genetics to develop new methodologies to access and characterize biodiversity in microbial samples. We demonstrate that fluorescent dyes and combinations of dyes can selectively stain portions of bacterial populations that can be isolated as sub-populations using fluorescence-activated cell sorting (FACS). Microbial sub-populations obtained by FACS differ substantially from the original microbial population, as demonstrated by denaturing gradient gel electrophoresis and determination of 16S rRNA gene sequences. These sub-populations can subsequently be used to inoculate microbial growth media, allowing the isolation of different microbial species from those that can be readily cultivated from the original sample using the same microbial growth media. When this technique was applied to the analysis of activated-sludge and Yellowstone Lake hydrothermal vent samples, comparative analysis of 16S rDNA sequences revealed that FACS allowed the detection of numerous bacterial species, including previously unknown species, not readily detectable in the original sample due to low relative abundance. This approach may result in a convenient methodology to more thoroughly characterize microbial biodiversity.  相似文献   

20.
The aim of this study was to establish a new tool for screening surface displayed peptide libraries based on the idea that cells expressing an enzyme inhibitor at the surface can be specifically labeled by the target enzyme. For this purpose peptide P15, exhibiting a K(i) value of 0.25 microM toward human cathepsin G, was expressed on the Escherichia coli cell surface by the use of Autodisplay. Purified cathepsin G was coupled to biotin and incubated with cells expressing the inhibitor. After addition of streptavidin-fluorescein isothiocyanate, these cells could be clearly differentiated from control cells by whole-cell fluorescence using flow cytometer analysis. To determine whether this protocol can be used for the sorting of single cells, a mixed population of cells with and without inhibitor was treated accordingly. Single cells were selected by increased fluorescence and sorted using fluorescence-activated cell sorting (FACS). Single cell clones were obtained and subjected to DNA sequence analysis. It turned out that the bacteria selected by this protocol displayed the correct peptide inhibitor at the cell surface. The protocol was then used to screen random peptide libraries, expressed at the cell surface, and a new lead structure for human cathepsin G (IC50 = 11.7 microM) was identified. The new drug discovery tool presented here consists of three steps: (a) surface display of peptide libraries, (b) selection of single cells with inhibiting structures by using the inherent affinity of the target enzyme, and (c) sorting of single cells, which were labeled by FACS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号