首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Peptidase activity capable of inactivating luteinizing hormone (LHRH) may have a physiological role in partially determining hypothalamic LHRH levels as well as LHRH levels at the gonadotrope. In our previous work ( Lapp and O' Conner , 1984, companion paper), use of the synthetic substrate leucine-p-nitroanilide (Leu-p-NA) to assay LHRH-degradative activity was validated by several methods. The current studies were conducted in order to monitor peptidase activity in the hypothalamus and pituitary throughout the rat 4-day estrous cycle. Activity in both tissues was significantly decreased during proestrus and diestrus I. It seems possible that the proestrous reduction in peptidase activity represents a permissive period necessary for the induction of the LHRH and LH surges. The decreased degradative activity in the pituitary on diestrus I may be involved in inducing the pituitary LHRH receptors which are reportedly synthesized prior to proestrus. The peptidase exhibits positive cooperativity with Leu-p-NA, and the degree of this cooperativity also fluctuates during the estrous cycle. Estradiol and progesterone given alone or in combination to prepubertal castrate animals increased the activity of the hypothalamic peptidase in vitro. The degree of positive cooperativity with which the enzyme functioned was also apparently altered by these gonadal steroids.  相似文献   

2.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

3.
Inoculation of cyclic female rats with the prolactin (Prl)/growth hormone-secreting pituitary tumor, MtT.W15, resulted in a cessation of estrous cyclicity within 5--10 days. Associated with this acyclicity was a persistently low serum concentration of estradiol and marked increases in both circulating Prl and progesterone. At Day 26 of acyclicity, basal serum luteinizing hormone (LH) values measured in samples taken every 20 min from 0900--1100 h were significantly reduced when compared to cyclic, nontumor animals on diestrus Day 2. There was no difference in basal follicle-stimulating hormone (FSH) concentrations. In a separate group of acyclic, tumor-bearing females 42--56 days after transplantation, a single s.c. injection of 20 micrograms estradiol benzoate (EB) at 1030 h elicited significant increases in both serum LH and FSH values between 1700 and 1830 h on the next day. The magnitude of the LH surge was reduced and that of FSH was increased in tumor-bearing animals when compared to cyclic, nontumor females given a similar EB injection on diestrus Day 1. These results demonstrate that chronic hyperprolactinemia is associated with inhibition of basal LH secretion and ovarian estrogen production and an increase in circulating progesterone concentrations. Nevertheless, the stimulatory feedback effects of estrogen on LH and FSH release are still present and functioning in acyclic female rats under chronically hyperprolactinemic conditions. These data suggest that the cessation of regular ovulatory cycles associated with hyperprolactinemia may be due to a deficiency of LH and/or estrogen secretion, but not to a lack of central nervous system response to the stimulatory feedback action of estrogen.  相似文献   

4.
The adult male golden hamster will undergo testicular regression when exposed to a short photoperiod, blinding, or late afternoon injections of melatonin. The present study was conducted to compare the effects of all three treatments on serum gonadotropin levels and testicular weights, and to evaluate the effects of these treatments on hypothalamic content of both immunoreactive and bioactive luteinizing hormone-releasing hormone (LHRH) levels. Hamsters were blinded (BL), exposed to a short photoperiod (SP), or received daily injections of melatonin (MEL) for 15 wk. Each treatment (BL, SP, MEL) induced a temporally similar decline in serum luteinizing hormone (LH), serum follicle-stimulating hormone (FSH), and testicular weight. Spontaneous recrudescence occurred earliest in the MEL group, with serum gonadotropins and testicular weight returning to normal by 15 wk. The SP group exhibited recovery of serum gonadotropins but not testicular weight by 15 wk. The BL group demonstrated partial recovery of serum FSH levels by 15 wk, with no recovery in either serum LH or testicular weight. Each treatment group demonstrated increased hypothalamic content of immunoreactive LHRH which was temporally correlated with the decreases of serum gonadotropins. Additionally, the MEL and SP groups demonstrated decreased immunoreactive LHRH levels during spontaneous recrudescence. Extracts of hypothalami from all treatment groups were bioactive on control hamster pituitary cells. These results indicate that there are temporal differences among the three common treatments and that these differences are manifested in serum gonadotropins, testicular weight and hypothalamic LHRH. Hypothalamic LHRH levels determined by radioimmunoassay and bioassay show periods of increase and decrease which coincide with periods of altered serum gonadotropin levels in all groups.  相似文献   

5.
Studies were conducted to evaluate the effects of acute (24 h) thermal stress on anterior pituitary function in hens. Circulating levels of luteinizing hormone (LH) were measured and the ability of the pituitary to respond to luteinizing hormone-releasing hormone (LHRH) challenge was determined. Moreover, bioassayable hypothalamic LHRH content was assessed by using dispersed anterior pituitary cells. In two separate experiments, circulating levels of LH were reduced in hens exposed to acute thermal stress (35 degrees C). Injection of LHRH did not result in significant differences in release of LH between normothermic and hyperthermic hens. However, the hypothalamic content of bioassayable hypothalamic releasing activity from hyperthermic hens were significantly reduced compared with normothermic hens. Taken together, these data suggest that the reproductive decline in the acutely heat-stressed hen is mediated by reduced LH releasing ability of the hypothalamus.  相似文献   

6.
Acetyl-L-carnitine (ALC) is known to affect several aspects of neuronal activity. To evaluate the neuroendocrine actions of this compound, several endocrinological parameters were followed in ALC-treated and control animals during recovery from dark-induced anestrus. In treated animals, serum luteinizing hormone (LH) and prolactin levels were higher than those of controls during the proestrous and estrous phases of the cycle, and serum estradiol levels were higher during estrus. No significant changes were observed in serum levels of follicle-stimulating hormone and progesterone. Uterine weight was increased in ALC-treated rats during proestrus and estrus, but not in diestrus. The basal release of gonadotropin-releasing hormone (GnRH) from perifused hypothalamic slices of ALC-treated animals was elevated at proestrus and diestrus, and GnRH release elicited by high K+ was higher during all three phases of the cycle. The basal release of LH from perifused pituitaries of treated animals was elevated in diestrus, and the LH response to GnRH was higher in estrus and diestrus I. Depolarization with K+ caused increased LH secretion during proestrus and estrus in treated animals. In contrast to these effects of ALC treatment in vivo, no direct effects of ALC were observed during short- or long-term treatment of cultured pituitary cells. These results indicate that ALC treatment influences hypothalamo-pituitary function in a cycle stage-dependent manner, and increases the secretory activity of gonadotrophs and lactotrophs. Since no effects of ALC on basal and agonist-induced secretory responses of gonadotrophs were observed in vitro, it is probable that its effects on gonadotropin release are related to enhancement of GnRH neuronal function in the hypothalamus.  相似文献   

7.
The effect of 5 alpha-dihydroprogesterone (5 alpha-DHP) on gonadotropin release was examined in the immature acutely ovariectomized (OVX) rat primed with a low dose of estradiol (E2). Treatment with various doses of 5 alpha-DHP given in combination with E2 increased levels of follicle-stimulating hormone (FSH) but had no effect on serum luteinizing hormone (LH). A single injection of a maximally stimulating dose of 5 alpha-DHP (0.4 mg/kg) stimulated increases in serum FSH at 1200 h and, 6 h later, at 1800 h. Pituitary LH and FSH content was dramatically enhanced by 1600 h and levels remained elevated at 1800 h. The administration of pentobarbital at 1200 h, versus 1400 h or 1600 h, prevented the increase in basal serum FSH levels at 1800 h, implying that the release of hypothalamic LH releasing hormone (LHRH) is modulated by 5 alpha-DHP. In addition, changes in pituitary sensitivity to LHRH as a result of 5 alpha-DHP were measured and a significant increase in the magnitude of FSH release was observed at 1200 h and 1800 h. Although the LH response to LHRH in 5 alpha-DHP-treated rats was not different from controls, the duration of LH release was lengthened. These results suggest that 5 alpha-DHP may stimulate FSH release by a direct action at the pituitary level. Together, these observations support the theory that 5 alpha-DHP mediates the facilitative effect of progesterone on FSH secretion and further suggests an action of 5 alpha-DHP in this phenomenon at both pituitary and hypothalamic sites.  相似文献   

8.
Mice chronically infected with Toxoplasma gondii exhibited reproductive failure characterized by a constant diestrous vaginal cytology and ovarian and uterine atrophy. Chronically infected mice were treated with 20 ng of D-Leu6-des-Gly-NH2-Pro-ethylamide (D-Leu6), a structural analog of luteinizing hormone-releasing hormone (LHRH), every 4 hr over a 12-hr period daily, for 3 days. Infected animals treated with D-Leu6 had greater pituitary weight (P less than 0.01), ovarian weight (P less than 0.01), and uterine weight (P less than 0.025), than did infected control mice treated with saline. In addition, a change in vaginal cytology to estrus, metestrus, and proestrus of the D-Leu6-treated animals was observed, although a contiguity of normal estrous cycles and reproductive function was not determined. Comparable basal levels of serum luteinizing hormone (LH) were seen in infected mice and uninfected normal mice. However, the infected animals demonstrated a decreased pituitary responsiveness to D-Leu6 when monitored at 60 (P less than 0.025) and 120 min (P less than 0.010) following intraperitoneal administration of a bolus of 200 ng of the analog. Thus, the observed reproductive failure involves the readily releasable pool of pituitary LH, since basal LH is similar in both groups, and appears to be due to a dysfunction of the hypothalamic-adenohypophyseal axis.  相似文献   

9.
To determine what role pituitary responsiveness plays in the suppression of gonadotropin level during incubation in the turkey, the ability of the pituitary to release luteinizing hormone (LH) in response to luteinizing hormone-releasing hormone (LHRH) was compared in incubating, laying, and photorefractory birds. In all three groups, the i.m. injection of LHRH (4 micrograms/kg) increased serum LH levels; however, the LH response was markedly enhanced in the incubating turkeys as compared with the laying (6.6-fold increase over preinjection levels vs. 1.9-fold; p less than 0.05) or the photorefractory birds (9.7-fold vs. 3.1-fold; p less than 0.05). The LHRH-induced LH release was also determined in turkeys as they shifted from the laying to the incubating phase of the reproductive cycle. This response increased (p less than 0.05) in magnitude as the birds started to incubate. The high prolactin level of incubating turkeys does not have a depressing effect on LHRH-stimulated LH release; thus, impaired LH response to LHRH is not a mechanism involved in the diminished gonadotropin secretion of incubating turkeys.  相似文献   

10.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

11.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

12.
The changes in serum gonadotrophins in male hamsters following one injection of 15 μg luteinizing hormone releasing hormone (LHRH) (Group A) were compared with those following the last injection of LHRH in animals receiving an injection approximately every 12 hr for 4 days (Group B) or 12 days (Group C). Peak follicle stimulating hormone (FSH) levels (ng/ml) were 1776±218 (Group A), 2904±346 (Group B), and 4336±449 (Group C). Peak luteinizing hormone (LH) values (ng/ml) were 1352±80 (Group A), 410±12 (Group B), and 498±53 (Group C). Serum FSH:LH ratios, calculated from the concentrations measured 16 hr after the last LHRH injections, were higher in Groups B and C than in Group A. Similar injections of LHRH (100 ng or 15 μg/injection) for 6 days elevated the serum FSH:LH ratio in intact males. Five such LHRH injections (100 ng/injection) blunted the rise in serum LH in orchidectomized hamsters. Direct effects of LHRH on gonadotrophin secretory dynamics or altered brain-pituitary-testicular interactions may alter the ratio of FSH to LH in the hamster.  相似文献   

13.
To determine the etiology of male hypogonadism in a newly found mutant rat (hgn/hgn, with a single autosomal recessive trait), concentrations of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were measured, and the responsiveness of the urogenital organs, hypothalamus, and pituitary gland to testosterone (1 mg/kg s.c. for 7 days), FSH (0.3 AU/kg s.c. for 7 days), human chorionic gonadotropin (hCG) (40 IU/kg s.c. for 7 days), and luteinizing hormone-releasing hormone (LHRH) (0.5 or 5.0 micrograms/kg s.c. for 7 days) were tested. Treatment with testosterone only increased the weights of all of the accessory sex organs, whereas treatment with FSH, hCG, or LHRH did not. Levels of serum FSH and LH were extremely higher and testosterone was lower in hgn/hgn males than in normal males. Serum FSH and LH decreased to levels found in intact animals after treatment with testosterone, suggesting that hypothalamic responsiveness to exogenous testosterone is present in the hgn/hgn males. Thus, the status of the hgn/hgn males was indicated to be due to primary Leydig cell dysfunction.  相似文献   

14.
目的:研究寒冷对雌性C57BL/6小鼠动情周期的影响。方法:12只雌性小鼠随机分为对照组、低温组,每组6只;低温组每天4℃暴露4 h,每天阴道涂片法观察小鼠动情状况,对照组饲养于常温动物房;每2 d称量体重,2周后心脏取血、子宫和卵巢,检测小鼠血清E2、FSH、LH、Prl、P水平,进行子宫、卵巢的组织病理学检查。结果:与对照组比较,低温组小鼠体重无显著性差异(P>0.05),小鼠子宫脏器系数明显较低、动情间期明显延长(P<0.01),血清FSH显著升高、Prl显著降低(P<0.01),小鼠子宫腺管扩张,卵巢卵泡数量明显减少。结论:寒冷可使雌性C57BL/6小鼠动情周期延长,进而可能影响生殖功能。  相似文献   

15.
Ovariectomy of adult female rats (200-230g) resulted in an increase in beta-adrenergic receptors in the cerebral cortex, hypothalamus and anterior pituitary. The anterior pituitary had the largest overall increase as well as the most rapid increase in beta-adrenergic receptor density of the tissues examined. The increase in hypothalamic or cerebral cortical beta-adrenergic receptors became apparent only long after ovariectomy (7-14 days). Fourteen days after ovariectomy, the density of beta-adrenergic receptors was 79%, 40%, and 24% in excess of control values in crude membranes prepared from anterior pituitary, hypothalamus and cerebral cortex, respectively. Over the same interval, the plasma concentration of luteinizing hormone (LH) increased 28-fold, while the concentration of follicle-stimulating hormone (FSH) rose 5-fold compared to control levels. Estradiol replacement (20 micrograms/kg/day) in these animals for four days before sacrifice concomitantly reduced plasma levels of the gonadotropins as well as the density of beta-adrenergic receptors in both the anterior pituitary and the hypothalamus. Long-term steroid replacement during the fifth and sixth week after ovariectomy, with implants of estradiol and progesterone which released the steroids in approximately physiological concentrations, significantly reduced beta-adrenergic density in anterior pituitary, but not in the hypothalamic membranes. This treatment significantly reduced plasma LH, but not FSH. Beta-adrenergic receptor density was also found to fluctuate significantly during the 4-day estrous cycle. The highest values were found on proestrus, and the lowest on diestrus 1. These studies indicate that changes in plasma concentrations of gonadal steroids (e.g. during the estrous cycle) influence the density of beta-adrenergic receptors in tissues involved in the control and release of anterior pituitary gonadotropins.  相似文献   

16.
The effects of thymulin and GnRH on FSH and LH release were studied in suspension cultures of anterior pituitary cells from female adult rats sacrificed on each day of the estrous cycle. The spontaneous release of gonadotropins by pituitaries, as well as their response to GnRH or thymulin addition, fluctuated during the estrous cycle. Adding thymulin to pituitary cells from rats in diestrus 1 increased the concentration of FSH; while in cells from rats in estrus, FSH level decreased. Thymulin had a stimulatory effect on the basal concentration of LH during most days of the estrous cycle. Adding GnRH increased FSH release in cells from rats in diestrus 1, diestrus 2, or proestrus, and resulted in higher LH levels in cells obtained from rats in all days of the estrous cycle. Compared to the GnRH treatment, the simultaneous addition of thymulin and GnRH to cells from rats in diestrus 1, diestrus 2, or proestrus resulted in lower FSH concentrations. Similar results were observed in the LH release by cells from rats in diestrus 1, while in cells from rats in proestrus or estrus, LH concentrations increased. A directly proportional relation between progesterone serum levels and the effects of thymulin on FSH release was observed. These data suggest that thymulin plays a dual role in the release of gonadotropins, and that its effects depend on the hormonal status of the donor's pituitary.  相似文献   

17.
The effect of bombesin (5 ng/kg/min X 2.5 h) on basal pituitary secretion as well as on the response to thyrotropin releasing hormone (TRH; 200 micrograms) plus luteinizing hormone releasing hormone (LHRH; 100 micrograms) was studied in healthy male volunteers. The peptide did not change the basal level of growth hormone (GH), prolactin, thyroid-stimulating hormone (TSH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). On the contrary, the pituitary response to releasing hormones was modified by bombesin administration. When compared with control (saline) values, prolactin and TSH levels after TRH were lower during bombesin infusion, whereas LH and FSH levels after LHRH were higher. Thus bombesin affects in man, as in experimental animals, the secretion of some pituitary hormones.  相似文献   

18.
To further understand the mechanism of action by which ethanol (ETOH) decreases plasma luteinizing hormone (LH) levels, the effects of multiple i.p. injections of EOH (1.0--1.5 g/kg) or saline on hypothalamic luteinizing hormone releasing hormone (LHRH) and plasma LH concentrations were evaluated in intact and castrate male rats. After injections, animals were decapitated, brains rapidly removed, and blocks containing the hypothalamus [with median eminence (ME)] were isolated. Hypothalami were subjected to acetic acid extraction and LHRH content quantitated via radioimmunoassay (RIA). Hypothalamic LHRH was found to be inversely correlated with plasma LH. In response to castration, both saline and ETOH-treated rats showed a decrease in hypothalamic LHRH content with a concomitant increase in plasma LH; however, the ETOH-treated animals retained significantly greater concentrations of LHRH and showed significantly lower plasma LH levels when compared to saline-treated controls. Likewise, ETOH-treated intact animals showed significant increases in LHRH content, with LH levels remaining significantly lower than the saline-treated intact controls. Thus, these data from both intact and castrate rats provide evidence to support the hypothesis that alcohol-induced decreases in LH levels are due to a diminished release rate of hypothalamic LHRH.  相似文献   

19.
Transfer of male golden (Syrian) hamsters from a 14L:10D (light:dark) to a 5L:19D photoperiod induced significant changes in pituitary function tested in vitro. Within 27 days after transfer to a 5L:19D photoperiod, basal prolactin (Prl) release was significantly depressed and response to dopamine (DA) was significantly enhanced as compared to Prl release by pituitaries from 14L: 10D hamsters. Follicle-stimulating hormone (FSH) release tended to be depressed after 9 or 27 days of 5L:19D exposure, but the effect was not significant. After 77 days of 5L:19D exposure, Prl release was further suppressed, while FSH release surpassed that seen in 14L:10D pituitaries. In vitro FSH response to luteinizing hormone releasing hormone (LHRH) was also enhanced at this time. After 15 weeks of exposure to a short photoperiod, FSH secretion was still elevated above control levels, but Prl release and Prl response to DA were no longer different from that of 14L: 10D controls. Secretion of luteinizing hormone (LH) in vitro, either basal or LHRH stimulated, was not affected by photoperiod at any time tested. From these results, we conclude that short photoperiod exposure does not reduce the pituitary's ability to secrete LH or FSH, although secretion of Prl is severely attenuated.  相似文献   

20.
Stress induced changes in testis function   总被引:2,自引:0,他引:2  
The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号