首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The p120 family of cell adhesion molecules   总被引:9,自引:0,他引:9  
p120 is the prototypic member of the p120 subfamily of armadillo-related proteins that includes p0071, delta-catenin/NPRAP, ARVCF and the more distantly related plakophilins 1-3. Like armadillo, beta-catenin and plakoglobin these proteins are involved in mediating cell-cell adhesion. Besides their junctional localization they also reveal a cytoplasmic and nuclear localization. Non-cadherin-associated, cytoplasmic p120 functions in Rho signaling and regulation of cytoskeletal organization and actin dynamics. The nuclear function remains largely unsolved. Some characteristics seem to be shared by the various members of the family but it seems unlikely that p120-related proteins have solely redundant functions and compete for interactions with identical binding partners. Stabilization of cadherins at the membrane seems a common function of p120, p0071, delta-catenin and ARVCF but it is not yet known if and how these proteins confer distinct properties to cellular junctions. Moreover, p0071, NPRAP and ARVCF have a C-terminal PDZ-binding motif that is lacking in p120 pointing to distinct roles of these proteins. PDZ domains are found in a series of proteins involved in establishing cell polarity in epithelial cells. Thus, p120 proteins may not only be master regulators of cadherin abundance and activity but play additional roles in regulating cell polarity. This review focuses on the putative roles of p120 proteins in cell polarity.  相似文献   

3.
Increased pericellular proteolysis due to an imbalance between MMPs (matrix metalloproteinases) and TIMPs (tissue inhibitors of metalloproteinases) promotes early stages of tumorigenesis. We have reported that TIMP-1 down-regulation confers tumorigenicity on immortal Swiss 3T3 fibroblasts. In pursuit of the mechanism involved in this transformation, we asked whether MMP inhibitors modulate contact inhibition and cell adhesion, because the dysregulation of these events is essential for cellular transformation. Using both genetic and biochemical means, we demonstrate that MMP inhibitors regulate fibroblast cell adhesion. TIMP-1 down-regulated cells formed dense, multilayered colonies, suggesting a loss of contact inhibition. Recombinant TIMP-1 and synthetic MMP inhibitors (MMPi) restored normal cell contact and density of these cells in a dose-dependent manner. Consequently, the effect of MMPi on both cell-extracellular matrix (ECM) and cell-cell adhesion were investigated. Upon MMPi treatment, p125(FAK) was redistributed, together with vinculin, to points of cell-ECM contact. Furthermore, phosphorylation of p125(FAK) was restored to levels similar to that of wild type. In parallel, MMPi treatment increased cadherin levels and stabilized cadherin-mediated cell-cell contacts. Moreover, enhanced cadherin function was evident as increased calcium-dependent cell-cell aggregation and co-localization of cadherin and beta-catenin at the cell membrane. We also obtained independent evidence of altered cadherin function using timp-1(-/-) mouse embryonic fibroblasts. Our data provide provocative evidence that increased pericellular proteolysis impacts cell adhesion systems to offset normal contact inhibition, with subsequent effects on cell transformation and tumorigenesis.  相似文献   

4.
Presenilin1 (PS1), a protein involved in cellular development, forms functional complexes with beta-catenin, a regulator of Wnt signaling and cell-cell adhesion. In addition, both proteins have been shown to play important roles in disease including cancer and Alzheimer disease. Although PS1 and beta-catenin are found in the same complexes, it is not clear whether they bind directly to each other or a third complex component, like cadherin, may mediate their interactions. Here we show that PS1 and beta-catenin form no detectable complexes in cells that express no cadherin. In contrast, these complexes are readily found in E-cadherin containing cells. Furthermore, binding of both PS1 and beta-catenin to E-cadherin is necessary for the formation of PS1/beta-catenin complexes. Importantly, our data show that binding of PS1 to cadherin mediates the effects of PS1 on the phosphorylation, ubiquitination, and destabilization of beta-catenin. Thus, cadherins mediate both the association of PS1 and beta-catenin and the effects of PS1 on the cellular levels of beta-catenin.  相似文献   

5.
E-cadherin adhesion activates c-Src signaling at cell-cell contacts   总被引:1,自引:0,他引:1       下载免费PDF全文
Cadherin-based cell-cell contacts are prominent sites for phosphotyrosine signaling, being enriched in tyrosine-phosphorylated proteins and tyrosine kinases and phosphatases. The functional interplay between cadherin adhesion and tyrosine kinase signaling, however, is complex and incompletely understood. In this report we tested the hypothesis that cadherin adhesion activates c-Src signaling and sought to assess its impact on cadherin function. We identified c-Src as part of a cadherin-activated cell signaling pathway that is stimulated by ligation of the adhesion receptor. However, c-Src has a biphasic impact on cadherin function, exerting a positive supportive role at lower signal strengths, but inhibiting function at high signal strengths. Inhibiting c-Src under circumstances when it is activated by cadherin adhesion decreased several measures of cadherin function. This suggests that the cadherin-activated c-Src signaling pathway serves positively to support cadherin function. Finally, our data implicate PI3-kinase signaling as a target for cadherin-activated c-Src signaling that contributes to its positive impact on cadherin function. We conclude that E-cadherin signaling is an important activator of c-Src at cell-cell contacts, providing a key input into a signaling pathway where quantitative changes in signal strength may result in qualitative differences in functional outcome.  相似文献   

6.
7.
The Wnt-1 proto-oncogene induces the accumulation of beta-catenin and plakoglobin, two related proteins that associate with and functionally modulate the cadherin cell adhesion proteins. Here we have investigated the effects of Wnt-1 expression on the tumor suppressor protein APC, which also associates with catenins. Expression of Wnt-1 in two different cell lines greatly increased the stability of APC-catenin complexes. The steady-state levels of both catenins and APC were elevated by Wnt-1, and the half-lives of both beta-catenin and plakoglobin associated with APC were also markedly increased. The stabilization of catenins by Wnt-1 was primarily the result of a selective increase in the amount of uncomplexed, monomeric beta-catenin and plakoglobin, detected both by affinity precipitation and size-exclusion chromatography of cell extracts. Exogenous expression of beta-catenin was possible in cells already responding to Wnt-1 but not in the parental cells, suggesting that Wnt-1 inhibits an essential regulatory mechanism for beta-catenin turnover. APC has the capacity to oppose this Wnt-1 effect in experiments in which overexpression of the central region of APC significantly reduced the size of the monomeric pool of beta-catenin induced by Wnt-1. Thus, the Wnt-1 signal transduction pathway leads to the accumulation of monomeric catenins and stabilization of catenin complex formation with both APC and cadherins.  相似文献   

8.
Cell-cell adhesion is a dynamic process in various cellular and developmental situations. Cadherins, well-known Ca(2+)-dependent adhesion molecules, are thought to play a major role in the regulation of cell-cell adhesion. However, the molecular mechanism underlying the rearrangement of cadherin-mediated cell-cell adhesion is largely unknown. Cdc42 and Rac1, belonging to the Rho small GTPase family, have recently been shown to be involved in the regulation of cell-cell adhesion. In addition, IQGAP1, an effector for Cdc42 and Rac1, has been shown to regulate the cadherin function through interaction with beta-catenin, a molecule associated with cadherin. In this review, we will summarize the mode of action of Cdc42 and Rac1 as well as IQGAP1 as molecular switches for the cadherin function, and then discuss physiological processes in which the Cdc42/Rac1/IQGAP1 system may be involved.  相似文献   

9.
Cell adhesion and signal transduction: the Armadillo connection   总被引:20,自引:0,他引:20  
The products of the Drosophila segment polarity gene armadillo and its vertebrate homologue beta-catenin are components of the signal transduction pathway for Wingless/Wnt-1; this signal regulates cell-fate choices in embryos of the fruit fly Drosophila and vertebrates. Armadillo/beta-catenin is also a component of cell-cell adherens junctions in epithelia. How can these two seemingly distinct roles be reconciled? Evidence suggests that Armadillo has distinct functions: one in the adherens junction and one or more in the cytoplasm. The biochemical role of Armadillo may be to serve as a scaffold upon which different multiprotein complexes are assembled.  相似文献   

10.
The role of platelet endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cell-cell interactions and its contribution to cadherin-mediated cell adhesion are poorly understood. Such studies have been difficult because all known endothelial cells express PECAM-1. We have used Madin-Darby canine kidney (MDCK) cells as a model system in which to evaluate the role of PECAM-1 isoforms that differ in their cytoplasmic domains in cell-cell interactions. MDCK cells lack endogenous PECAM-1 but form cell-cell junctions similar to those of endothelial cells, in which PECAM-1 is concentrated. MDCK cells were transfected with two isoforms of murine PECAM-1, Delta15 and Delta14&15, the predominant isoforms expressed in vivo. Expression of the Delta15 isoform resulted in apparent dedifferentiation of MDCK cells concomitant with the loss of adherens junctions, down-regulation of E-cadherin, alpha- and beta-catenin expression, and sustained activation of extracellular regulated kinases. The Delta15 isoform was not concentrated at cell-cell contacts. In contrast, the Delta14&15 isoform localized to sites of cell-cell contact and had no effect on MDCK cell morphology, cadherin/catenin expression, or extracellular regulated kinase activity. Thus, the presence of exon 14 in the cytoplasmic domain of PECAM-1 has dramatic effects on the ability of cells to maintain adherens junctions and an epithelial phenotype. Therefore, changes in the expression of exon 14 containing PECAM-1 isoforms, which we have observed during development, may have profound functional consequences.  相似文献   

11.
beta-Catenin was initially characterized as a protein interacting with the cadherin cytoplasmic tail and regulating cell-cell contacts and actin cytoskeleton interactions. Moreover, the gene coding for the Drosophila orthologue of beta-catenin, armadillo, was independently identified downstream of wingless in the segment-polarity signalling pathway. In fact, beta-catenin/Armadillo turned out to be key mediators of the Wnt/Wingless pathways in vertebrates and invertebrates. beta-Catenin participates in both adhesion and signalling functions in a mutually exclusive manner; bound to cadherins at the plasma membrane or 'unbound' in cytosolic or nuclear complexes. This model had placed beta-catenin at the crossroads between cadherin and Wnt signalling, leading to the dogma of inhibition of beta-catenin signalling by cadherins.  相似文献   

12.
Cadherins and catenins play an important role in cell-cell adhesion. Two of the catenins, beta and gamma, are members of a group of proteins that contains a repeating amino acid motif originally described for the Drosophila segment polarity gene armadillo. Another member of this group is a 120-kD protein termed p120, originally identified as a substrate of the tyrosine kinase pp60src. In this paper, we show that endothelial and epithelial cells express p120 and p100, a 100-kD, p120- related protein. Peptide sequencing of p100 establishes it as highly related to p120. p120 and p100 both appear associated with the cadherin/catenin complex, but independent p120/catenin and p100/catenin complexes can be isolated. This association is shown by coimmunoprecipitation of cadherins and catenins with an anti-p120/p100 antibody, and of p120/p100 with cadherin or catenin antibodies. Immunocytochemical analysis with a p120-specific antibody reveals junctional colocalization of p120 and beta-catenin in epithelial cells. Catenins and p120/p100 also colocalize in endothelial and epithelial cells in culture and in tissue sections. The cellular content of p120/p100 and beta-catenin is similar in MDCK cells, but only approximately 20% of the p120/p100 pool associates with the cadherin/catenin complex. Our data provide further evidence for interactions among the different arm proteins and suggest that p120/p100 may participate in regulating the function of cadherins and, thereby, other processes influenced by cell-cell adhesion.  相似文献   

13.
Rap1 is a small GTPase that regulates adherens junction maturation. It remains elusive how Rap1 is activated upon cell-cell contact. We demonstrate for the first time that Rap1 is activated upon homophilic engagement of vascular endothelial cadherin (VE-cadherin) at the cell-cell contacts in living cells and that MAGI-1 is required for VE-cadherin-dependent Rap1 activation. We found that MAGI-1 localized to cell-cell contacts presumably by associating with beta-catenin and that MAGI-1 bound to a guanine nucleotide exchange factor for Rap1, PDZ-GEF1. Depletion of MAGI-1 suppressed the cell-cell contact-induced Rap1 activation and the VE-cadherin-mediated cell-cell adhesion after Ca2+ switch. In addition, relocation of vinculin from cell-extracellular matrix contacts to cell-cell contacts after the Ca2+ switch was inhibited in MAGI-1-depleted cells. Furthermore, inactivation of Rap1 by overexpression of Rap1GAPII impaired the VE-cadherin-dependent cell adhesion. Collectively, MAGI-1 is important for VE-cadherin-dependent Rap1 activation upon cell-cell contact. In addition, once activated, Rap1 upon cell-cell contacts positively regulate the adherens junction formation by relocating vinculin that supports VE-cadherin-based cell adhesion.  相似文献   

14.
《The Journal of cell biology》1996,135(6):1899-1911
Epithelial cell-cell adhesion requires interactions between opposing extracellular domains of E-cadherin, and among the cytoplasmic domain of E-cadherin, catenins, and actin cytoskeleton. Little is known about how the cadherin-catenin-actin complex is assembled upon cell-cell contact, or how these complexes initiate and strengthen adhesion. We have used time-lapse differential interference contrast (DIC) imaging to observe the development of cell-cell contacts, and quantitative retrospective immunocytochemistry to measure recruitment of proteins to those contacts. We show that E-cadherin, alpha-catenin, and beta- catenin, but not plakoglobin, coassemble into Triton X-100 insoluble (TX-insoluble) structures at cell-cell contacts with kinetics similar to those for strengthening of E-cadherin-mediated cell adhesion (Angres, B., A. Barth, and W.J. Nelson. 1996. J. Cell Biol. 134:549- 557). TX-insoluble E-cadherin, alpha-catenin, and beta-catenin colocalize along cell-cell contacts in spatially discrete micro-domains which we designate "puncta," and the relative amounts of each protein in each punctum increase proportionally. As the length of the contact increases, the number of puncta increases proportionally along the contact and each punctum is associated with a bundle of actin filaments. These results indicate that localized clustering of E- cadherin/catenin complexes into puncta and their association with actin is involved in initiating cell contacts. Subsequently, the spatial ordering of additional puncta along the contact may be involved in zippering membranes together, resulting in rapid strengthening of adhesion.  相似文献   

15.
Ksp- and LI-cadherin are structurally homologous proteins coexpressed with E-cadherin in renal and intestinal epithelia, respectively. Whereas LI-cadherin has been shown to mediate Ca2+-dependent homotypic cell-cell adhesion independent of stable interactions with the cytoskeleton, little is known about the physiological role of Ksp-cadherin. To analyze its potential adhesive and morphoregulatory functions, we expressed murine Ksp-cadherin in CHO cells. In this report, we show that Ksp-cadherin induces homotypic and Ca2+-dependent cell-cell adhesion that can be specifically blocked with antibodies raised against the cadherin repeats EC1 and EC2. Ksp-cadherin mediates about the same quantitative adhesive effect (aggregation index) as LI- and E-cadherin. However, the cellular phenotype induced by Ksp-cadherin resembles more closely that of LI- than E-cadherin. This could reflect our observation, that Ksp-cadherin, as well as LI-cadherin, does not directly interact with beta-catenin. In conclusion, both cadherins are thus not only structurally but also functionally related and may share other functions within their respective epithelia.  相似文献   

16.
17.
18.
《The Journal of cell biology》1996,134(5):1271-1281
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesivity, catenins have more recently been indicated to participate in cell and developmental signaling pathways. beta-Catenin, for example, associates directly with at least two receptor tyrosine kinases and transduces developmental signals within the Wnt pathway. Catenins also complex with the tumor suppressor protein adenomatous polyposis coli (APC), which appears to have a role in regulating cell proliferation. We have used the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to beta-catenin's central Armadillo repeat domain. Western blotting of immunoprecipitates from cell line and mouse and rat brain extracts indicate that this interaction exists in vivo. Fascin and beta-catenin's association was further substantiated in vitro using purified proteins isolated from recombinant bacterial and baculoviral sources. Immunoprecipitation analysis indicates that fascin additionally binds to plakoglobin, which is highly homologous to beta-catenin but not to p120cas, a newly described catenin which contains a more divergent Armadillo-repeat domain. Immunoprecipitation, in vitro competition, and domain-mapping experiments demonstrate that fascin and E-cadherin utilize a similar binding site within beta-catenin, such that they form mutually exclusive complexes with beta-catenin. Immunofluorescence microscopy reveals that fascin and beta-catenin colocalize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. In addition to cell-cell borders, cadherins were unexpectedly observed to colocalize with fascin and beta-catenin at cell leading edges. It is conceivable that beta-catenin participates in modulating cytoskeletal dynamics in association with the microfilament-bundling protein fascin, perhaps in a coordinate manner with its functions in cadherin and APC complexes.  相似文献   

19.
Cadherins mediate cell-cell adhesion, but little is known about how their expression is regulated. In Madin-Darby canine kidney (MDCK) cells, the cadherin-associated cytoplasmic proteins alpha- and beta-catenin form high molecular weight protein complexes with two glycoproteins (Stewart, D. B., and Nelson, W. J. (1997) J. Biol. Chem. 272, 29652-29662), one of which is E-cadherin and the other we show here is the type II cadherin, cadherin-6 (K-cadherin). In low density, motile MDCK cells, the steady-state level of cadherin-6 is low, but protein is synthesized. However, following cell-cell adhesion, cadherin-6 becomes stabilized and accumulates by >50-fold at cell-cell contacts while the E-cadherin level increases only 5-fold during the same period. To investigate a role of beta-catenin in regulation of cadherin expression in MDCK cells, we examined the effects of expressing signaling-active beta-catenin mutants (DeltaGSK, DeltaN90, and DeltaN131). In these cells, while levels of E-cadherin, alpha- and beta-catenin are similar to those in control cells, levels of cadherin-6 are significantly reduced due to rapid degradation of newly synthesized protein. Additionally, these cells appeared more motile and less cohesive, as expression of DeltaGSK-beta-catenin delayed the establishment of tight confluent cell monolayers compared with control cells. These results indicate that the level of cadherin-6, but not that of E-cadherin, is strictly regulated post-translationally in response to Wnt signaling, and that E-cadherin and cadherin-6 may contribute different properties to cell-cell adhesion and the epithelial phenotype.  相似文献   

20.
《The Journal of cell biology》1993,123(6):1857-1865
The Wnt-1 gene plays an essential role in fetal brain development and encodes a secreted protein whose signaling mechanism is presently unknown. In this report we have investigated intracellular mechanisms by which the Wnt-1 gene induces morphological changes in PC12 pheochromocytoma cells. PC12 cells expressing Wnt-1 show increased steady-state levels of the adhesive junction protein plakoglobin, and an altered distribution of this protein within the cell. This effect appears similar to a modulation of the plakoglobin homolog, Armadillo, that occurs in Drosophila embryos in response to the Wnt-1 homolog, wingless (Riggleman, B., P. Schedl, and E. Wieschaus. 1990. Cell. 63:549-560). In addition, PC12/Wnt-1 cells show elevated expression of E-cadherin and increased calcium-dependent cell-cell adhesion. These results imply evolutionary conservation of cellular responses to Wnt- 1/wingless and indicate that in certain cell types Wnt-1 may act to modulate cell adhesion mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号