首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
2.
3.
4.
Summary A plant nuclear protein PEP-I, which binds specifically to the promoter region of the phosphoenolpyruvate carboxylase (PEPC) gene, was identified. Methylation interference analysis and DNA binding assays using synthetic oligonucleotides revealed that PEP-I binds to GC-rich elements. These elements are directly repeated sequences in the promoter region of the PEPC gene and we have suggested that they may be cis-regulatory element of this gene. The consensus sequence of the element is CCCTCTCCACATCC and the CTCC is essential for binding of PEP-I. PEP-I is present in the nuclear extracts of green leaves, where the PEPC gene is expressed. However, no binding was detected in tissues where the PEPC gene is not expressed in vivo, such as roots or etiolated leaves. Thus, PEP-1 is the first factor identified in plants which has different binding activity in light-grown compared with dark-grown tissue. PEP-I binding is also tissue-specific, suggesting that PEP-1 may function to coordinate PEPC gene expression with respect to light and tissue specificity. This report describes the identification and characterization of the sequences required for PEP-1 binding.  相似文献   

5.
6.
7.
8.
9.
Le AV  Tavalin SJ  Dodge-Kafka KL 《Biochemistry》2011,50(23):5279-5291
The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.  相似文献   

10.
17β-estradiol induces the synthesis of massive amounts of the hepatic mRNA encoding the Xenopus laevis egg yolk precursor protein, vitellogenin. Vitellogenin mRNA exhibits a half life of approx. 500 h when 17β-estradiol is present, and 16 h after removal of 17β-estradiol from the culture medium. We recently reported that Xenopus liver contains a protein, which is induced by 17β-estradiol and binds with a high degree of specificity to a binding site in a segment of the 3′-untranslated region (3′-UTR) of vitellogenin mRNA implicated in 17β-estradiol stabilization of vitellogenin mRNA. To determine if this mRNA binding protein was specific to this system, or if it was present elsewhere, and regulated by other steroids, we examined the tissue distribution and androgen regulation of this protein. Substantial amounts of the vitellogenin 3′-UTR binding protein were found in several Xenopus tissues including testis, ovary and muscle. In the absence of hormone treatment, lung and intestine contained minimal levels of the mRNA binding protein. Testosterone administration induced the vitellogenin 3′-UTR RNA binding protein in several tissues. Additionally, we found a homologous mRNA binding protein in MCF-7, human breast cancer cells. Although the MCF-7 cell protein was not induced by 17β-estradiol, the MCF-7 cell mRNA binding protein appears to be closely related to the Xenopus protein since: (i) the human and Xenopus proteins elicit gel shifted bands with the same electrophoretic mobility using the vitellogenin mRNA 3′-UTR binding site; (ii) The human and Xenopus proteins exhibit similar binding specificity for the vitellogenin 3′-UTR RNA binding site; and (iii) RNA from MCF-7 cells is at least as effective as RNA from control male Xenopus liver in blocking the binding of the Xenopus and human proteins to the vitellogenin mRNA 3′-UTR binding site. Its broad tissue distribution and regulation by both 17β-estradiol and testosterone suggests that this mRNA binding protein may play a significant role in steroid hormone regulation of mRNA metabolism in many vertebrate cells.  相似文献   

11.
12.
13.
14.
15.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity.  相似文献   

16.
H Huang  M Tudor  T Su  Y Zhang  Y Hu    H Ma 《The Plant cell》1996,8(1):81-94
MADS domain proteins are members of a highly conserved family found in all eukaryotes. Genetic studies clearly indicate that many plant MADS domain proteins have different regulatory functions in flower development, yet they share a highly conserved DNA binding domain and can bind to very similar sequences. How, then, can these MADS box genes confer their specific functions? Here, we describe results from DNA binding studies of AGL1 and AGL2 (for AGAMOUS-like), two Arabidopsis MADS domain proteins that are preferentially expressed in flowers. We demonstrate that both proteins are sequence-specific DNA binding proteins and show that each binding consensus has distinct features, suggestion a mechanism for specificity. In addition, we show that the proteins with more similar amino acid sequences have more similar binding sequences. We also found that AGL2 binds to DNA in vitro as a dimer and determined the region of AGL2 that is sufficient for DNA binding and dimerization. Finally, we show that several plant MADS domain proteins can bind to DNA either as homodimers or as heterodimers, suggesting that the number of different regulators could be much greater than the number of MADS box genes.  相似文献   

17.
The tobacco mitogen-activated protein kinase kinase kinase NPK1 localizes to the equatorial region of phragmoplasts by interacting with kinesin-like protein NACK1. This leads to activation of NPK1 kinase at late M phase, which is necessary for cell plate formation. Until now, its localization during interphase has not been reported. We investigated the subcellular localization of NPK1 in tobacco-cultured BY-2 cells at interphase using indirect immunofluorescence microscopy and fusion to green fluorescent protein (GFP). Fluorescence of anti-NPK1 antibodies and GFP-fused NPK1 were detected only in the nuclei of BY-2 cells at interphase. Examination of the amino acid sequence of NPK1 showed that at the carboxyl-terminal region in the regulatory domain, which contains the binding site of NACK1, NPK1 contained a cluster of basic amino acids that resemble a bipartite nuclear localization signal (NLS). Amino acid substitution mutations in the critical residues in putative NLS caused a marked reduction in nuclear localization of NPK1 in BY-2 cells, indicating that this sequence is functional in tobacco BY-2 cells. We also found that the 64-amino acid sequence at the carboxyl terminus that contains NLS sequence is essential for interaction with NACK1, and that mutations in the NLS sequence prevented NPK1 from interacting with NACK1. Thus, the amino acid sequence at the carboxyl-terminal region of NPK1 has dual functions for nuclear localization during interphase and binding NACK1 in M phase.  相似文献   

18.
19.
Two different intrachain cAMP binding sites of cAMP-dependent protein kinases   总被引:15,自引:0,他引:15  
The regulatory subunits of both isozymes of cAMP-dependent protein kinase bind 2 mol of cAMP/mol of monomer. cAMP dissociation studies indicate similar cAMP binding behavior for each isozyme. Each has two different intrachain cAMP binding components present in approximately equal amounts and the rate of cAMP dissociation is 5- to 10-fold slower from one site (Site 1) than from the other (Site 2). Equilibrium [3H]cAMP binding is inhibited by several competing cyclic nucleotides. Following equilibrium binding using saturating [3H]cAMP in the presence of competing nucleotide, the pattern of release of [3H]cAMP, monitored in the presence of an excess of nonradioactive cAMP, suggests site-specific selectivity of some of the cyclic nucleotides. As compared with cAMP, cIMP prefers Site 2 for both regulatory subunits, whereas N6, O2-dibutyryl-cAMP shows a similar preference only with isozyme II regulatory subunit. 8-Bromo-cAMP, 8-bromo-cGMP, and 8-azido-cAMP prefer Site 1 of both proteins. The results indicate that for each isozyme the two intrachain binding sites have different analogue specificities and cAMP dissociation rates. Site 1 or Site 2 of one isozyme has a similar but not identical cyclic nucleotide specificity and cAMP dissociation rate to the corresponding site of the other isozyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号