首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the mode of action of phenoxybenzamine, an alpha adrenergic blocking agent, its effects upon plasma LH levels in ovariectomized rats and upon the ovulatory LH surge expected between 1400 and 1600, the critical period, on the day of proestrus in normal rats were studied. A single injection of phenoxybenzamine, 20 mg/kg, given at 1300 on the day of proestrus bokced ovulation (1 out of 7 ovulating), while plasma LH did not differ from controls between 1500 and 1600. An additional injection of 20 iu HCG at 1500 prevented the ovulation block (83% ovulating). A single phenoxybenzamine injection at 1700 failed to prevent ovulation (5 out of 7 ovulating). The beta adrenergic blocking agents, propanolol and MJ 1999, did not affect ovulation. Treatment with phenoxybenzamine for 2 days, 20mg/kg/day, for 8 days, 10mg/kg/day, were did not prevent the rise causing a reduction in blood flow through the ovary rather than acting as a neurogenic stimulus in the hypothalamus.  相似文献   

2.
T Ieiri  H T Chen  J Meites 《Life sciences》1980,26(15):1269-1274
The purpose of this study was to determine whether naloxone stimulated LH release via a serotonergic mechanism. Injection of naloxone hydrochloride (2 mg/kg B.W.) into 25-day old female prepubertal rats resulted in a significant elevation in serum LH 30 min later. Injection of this dose of naloxone together with morphine sulfate (2 or 5 mg/kg B.E.) resulted in inhibition of naloxone-induced LH release. When rats were first injected with 5-hydroxytryptophan (5-HTP) to increase hypothalamic serotonin content, naloxone failed to increase serum LH levels. On the other hand, when parachlorophenylalanine (PCPA) was given first to reduce hypothalamic serotonin content, naloxone-induced LH release was potentiated. Morphine failed to inhibit the naloxone-induced rise in serum LH when PCPA was first administered. Neither 5-HTP nor PCPA, when injected alone, altered serum LH values. These results suggest that naloxone promotes LH release by reducing hypothalamic serotonergic activity, and morphine inhibits LH release by increasing hypothalamic serotonergic activity. This does not exclude possible involvement of other neurotransmitters.  相似文献   

3.
This study examined the importance of pulsatile luteinizing hormone (LH) release on diestrus 1 (D1; metestrus) in the rat estrous cycle to ovarian follicular development and estradiol (E2) secretion. Single injections of a luteinizing hormone-releasing hormone (LHRH) antagonist given at -7.5 h prior to the onset of a 3-h blood sampling period on D1 reduced mean blood LH levels by decreasing LH pulse amplitude, while frequency was not altered. Sequential injections at -7.5 and -3.5 h completely eliminated pulsatile LH secretion. Neither treatment altered the total number of follicles/ovary greater than 150 mu in diameter, the number of follicles in any size group between 150 and 551 mu, or plasma E2, progesterone, or follicle-stimulating hormone (FSH) levels. However, both treatments with LHRH antagonist significantly increased the percentage of atretic follicles in the ovary. These data indicate that: 1) pulsatile LH release is an important factor in determining the rate at which follicles undergo atresia on D1; 2) reductions in LH pulse amplitude alone are sufficient to increase the rate of follicular atresia on D1; 3) an absence of pulsatile LH release for a period of up to 10 h on D1 is not sufficient to produce a decline in ovarian E2 secretion, most likely because the atretic process was in its early stages and had not yet affected a sufficient number of E2-secreting granulosa cells to reduce the follicle's capacity to secrete E2; and 4) suppression or elimination of pulsatile LH release on D1 is not associated with diminished FSH secretion.  相似文献   

4.
The effects ov various "stresses" on pulsatile LH release in ovariectomized rats were investigated. Blood was withdrawn through atrial cannulas and replaced with saline at 10 min intervals for 190 min. Plasma LH concentration was suppressed in rats subjected to 30 or 60 min of immobilization during the collection period. On the contrary, sham ovariectomy 4 hr prior to blood collection, leg break or iv injection of ACTH or corticosterone during the collection period did not alter pulsatile patterns in LH release. The results indicate that LH release mechanisms are highly resistant to "stresses" but that immobilization can suppress LH release by an unknown mechanism.  相似文献   

5.
The endogenous opioid peptides (EOPs) may inhibit the rate of hypothalamic gonadotropin-releasing hormone (GnRH) release and hence the frequency of pulsatile luteinizing hormone (LH) release, particularly in the luteal phase of the menstrual cycle. Our objectives were to compare the effects of an opiate antagonist, naloxone (NAL), on the patterns of LH, estradiol-17 beta (E2), and progesterone (P4) secretion during the follicular and luteal phases of the macaque menstrual cycle. Plasma levels of E2, P4, and bioactive LH were measured in serial, 15-min blood samples during 8-hr infusions of NAL (2 mg/hr) or saline, either on Days 5 or 6 of the follicular phase (FN and FS, n = 5 and 4, respectively) or on Days 8, 9, or 10 of the luteal phase (LN and LS, n = 5 each) of a menstrual cycle. The pulsatile parameters of each hormone were determined by PULSAR analysis and the correspondence of steroid pulses with those of LH were analyzed for each cycle stage in each animal. As expected, LH mean levels and pulse frequencies in LS monkeys were only about one-third of those values in FS animals. NAL had no effects on pulsatile LH, E2, or P4 release during the follicular phase. In contrast, luteal phase NAL infusions increased both LH mean levels and pulse frequencies to values which were indistinguishable from those in FS animals. LH pulse amplitudes did not differ among the four groups. Mean levels and pulse frequencies of P4 secretion in LS monkeys were about 4- and 14-fold greater than those values in FS animals. Mean levels and pulse amplitudes of P4 release in LN animals were greater than those values in all other groups. LH and E2 pulses were not closely correlated in follicular phase animals, and this pulse association was not altered by NAL. In FS monkeys, LH and P4 pulses were not correlated; however, NAL increased this LH-p4 pulse correspondence. LH and P4 pulses were closely correlated in luteal phase animals and this association was not affected by NAL. Our data suggest that the EOPs inhibit the frequency of pulsatile LH secretion in the presence of luteal phase levels of P4. During the midfollicular phase when LH pulses occur every 60 to 90 min, the opioid antagonist NAL alters neither the pulsatile pattern of LH release nor E2 secretion, but NAL may directly affect P4-secreting cells.  相似文献   

6.
This study investigated the effect of melatonin treatment of ewe lambs on LH pulsatility in an attempt to examine the mechanism whereby melatonin advances the onset of puberty. Six ewe lambs were given intravaginal melatonin implants at 12.8 weeks of age. Another six lambs received empty implants. All lambs were serially blood sampled every 15 minutes for six hours on several occasions prior to the onset of puberty. One week after implantation LH pulse frequency and mean LH levels were higher in treated lambs than the control lambs (pulse frequency 0.13/h vs 0.03/h; mean LH levels 2.0 +/- 0.2 ng/ml vs 1.3 +/- 0.1 ng/ml; p less than 0.05). Melatonin treatment failed to alter pulse frequency after the initial increase. Puberty was advanced by 3 weeks in the treated group. In the second experiment six lambs received melatonin implants at 13 weeks of age and another six lambs served as control. In this experiment blood samples were taken intensively during the first few weeks after treatment. Results of this study show that mean plasma LH levels and LH pulse frequency were again higher during the first week after implantation. This transient increase in LH release may be part of the mechanism initiating the eventual advancement of puberty although the significance of this increase is questionable. In both experiments the LH response to estradiol injection was monitored at various times after treatment, but no effects of melatonin were found, although the magnitude of the response increased with age.  相似文献   

7.
8.
Crude aqueous extracts of the plant Lithospermum ruderale have been shown to have antigonadotropic activity that resides in its polyphenolic fractions. This study examined the ability of one such polyphenol, lithospermic acid (LA), and its oxidation product(s) (oxyLA) to inhibit luteinizing hormone (LH) secretion in vitro. Primary pituitary cultures were exposed for 4.5 or 6 h to either LA or oxyLA. In the presence of gonadotropin-releasing hormone (GnRH), oxyLA was at least 10 times more potent than LH in inhibiting LH release. In the absence of GnRH, oxyLA but not LA caused an increase in LH release. After washing to remove the oxyLA and LA, cultures were challenged with GnRH. Only cultures pretreated with oxyLA showed a decrease in GnRH-stimulated LH release. These results indicate that oxyLA may contain the primary antigonadotropic agents in L. ruderale. The different responses observed in the presence and absence of GnRH, and the morphologic features of the oxyLA-treated cultures, suggest that the mechanism of action may involve the cell membrane of the gonadotrope.  相似文献   

9.
10.
The present experiments were designed to study the interaction between estradiol benzoate (EB) and thyroxine (T4) given in vivo on the responsiveness of pituitary luteinizing hormone (LH) to gonadotropin-releasing hormone (GnRH) and the release of GnRH in vitro. Ovariectomized-thyroidectomized (Ovx-Tx) rats were injected s.c. with saline or T4 (2 micrograms/100 g b.wt), and oil or EB (0.1 microgram) once daily for 40 days following a 2 x 2 factorial design. All animals were then decapitated and blood samples were collected. Anterior pituitaries (APs) were incubated in vitro with and without 0.1 ng GnRH at 37 degrees C for 4 h. Mediobasal hypothalami (MBHs) were excised and then incubated with and without APs from Ovx donor rats. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. The LH level in media containing MBHs and donor APs was used as the index of bioactive GnRH release. In Ovx-Tx rats, T4 injections reduced the serum LH concentration, the pituitary LH response to GnRH, and the bioactive as well as the immunoreactive GnRH release. The serum LH levels and the spontaneous as well as the GnRH-stimulated release of LH in vitro were suppressed in Ovx-Tx rats following administration of EB. By contrast, the serum LH concentration, as well as pituitary LH response to GnRH and GnRH release in vitro, were higher in the group treated with both T4 and EB than in that treated with saline and EB. These results suggest that the differential changes in the LH secretion after thyroidectomy of Ovx versus non-Ovx rats are due to an antagonistic effect between T4 and estrogen on the response of pituitary LH to GnRH, and the release of GnRH.  相似文献   

11.
Basal concentrations of prolactin but not luteinizing hormone were elevated in ewes by 8--10 h of heat stress given daily during the first 11 days of their oestrous cycle. However, the prolactin and luteinizing hormone responses to thyrotrophin releasing hormone and gonadotrophin releasing hormone were unaffected.  相似文献   

12.
The effects of thyroidectomy and thyroxine (T4) replacement on the release of luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH) in ovariectomized (Ovx) rats were studied. Immediately after ovariectomy, rats were thyroidectomized (Tx) or sham-Tx. The Ovx-Tx rats were injected subcutaneously with either saline or T4 (2 micrograms/100 g body weight) daily for 30 days before sacrifice. Sham-Tx rats were treated with saline only. Twenty hours after the last injection, the blood sample was obtained by decapitation. The excised anterior pituitary gland (AP) was bisected and incubated in vitro with or without 0.1, 0.5, 2.5, and 50 ng GnRH at 37 degrees C for 4 h. The mediobasal hypothalamus (MBH) was bisected and incubated with or without the AP of Ovx donor rat in vitro. Concentrations of LH and GnRH in the medium and that of LH in the serum were measured by radioimmunoassay. LH in the serum of Tx rats was higher than that in the serum of sham-Tx and Tx-T4 rats. Thyroidectomy resulted in an increase of LH release by Ovx rat AP, stimulated with or without 0.1 and 50 ng GnRH, as well as in an increase of immunoreactive GnRH release from MBH of Ovx rats in vitro. After a 4-hour incubation with donor APs, the LH in the medium containing MBH obtained from Tx rats was significantly higher than that obtained from sham-Tx and Tx-T4 rats. LH concentrations, in both sera and media, as well as GnRH concentration in the media of euthyroid and T4-replaced Tx groups were nonsignificantly different. These results suggest that T4 is inhibitory to the basal and GnRH-stimulated LH release as well as to the release of GnRH in the absence of ovarian hormones.  相似文献   

13.
14.
15.
16.
Eighteen ovariectomized fallow deer does and two adult bucks were used to investigate the effect of exogenous progesterone and oestradiol benzoate on oestrous behaviour and secretion of luteinizing hormone (LH). In Expts 1 and 2, conducted during the breeding season (April-September), does were treated with intravaginal Controlled Internal Drug Release (CIDR) devices (0.3 g progesterone per device) for 12 days and differing doses of oestradiol benzoate administered 24 h after removal of the CIDR device. The dose had a significant effect on the proportion of does that exhibited oestrus within the breeding season (P less than 0.001), the incidence of oestrus being 100% with 1.0, 0.1 and 0.05 mg, 42% for 0.01 mg and 0% for 0.002 mg oestradiol benzoate. There was a significant log-linear effect of dose on the log duration of oestrus, which was 6-20, 2-14, 2-12 and 2 h after treatment with 1, 0.1, 0.05 and 0.01 mg of oestradiol benzoate, respectively. Dose had a significant effect on the peak plasma LH concentration (P less than 0.01), mean (+/- s.e.m.) surge peaks of 27.7 +/- 2.3, 25.9 +/- 1.8 and 18.6 +/- 3.4 ng/ml being observed following treatment with 1, 0.1 and 0.01 mg oestradiol benzoate respectively. In Expt 3, also conducted during the breeding season, progesterone treatment (0 vs. 6-12 days) before the administration of 0.05 mg oestradiol benzoate had a significant effect on the incidence of oestrus (0/6 vs. 10/12, P less than 0.05), but not on LH secretion. The duration of progesterone treatment (6 vs. 12 days) had no effect on oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Gonadotrophin releasing hormone (GnRH, 5 μg every 4 h) was administered to six dairy cows between days 5 and 10 post-partum and the release of luteinizing hormone (LH) and the onset of ovulation were determined. LH was measured using a specific radioimmunoassay and the occurrence of ovulation was assessed from changes in the concentration of progesterone in milk. Treatment with GnRH resulted in a median time of first ovulation of 17.0 days after calving. This was less (P < 0.05) than that observed for control cows (21.5 days, n = 7). Determinations of plasma LH concentrations over an 8-h period on days 6 and 10 post-partum indicated that there was a tendency for GnRH-treated cows to have higher levels of LH on these days. The 5 μg dose of GnRH did not repeatably induce a release of LH between days 6 and 10. Endogenous pulsatile release of LH did, however, increase in frequency from 3.18 pulses per 8 h on day 6 to 5.18 pulses per 8 h on day 14 post-partum (P < 0.01).In a second experiment groups of 20 cows were treated with either 5 μg GnRH every 4 h or 15 μg GnRH every 12 h from days 5 to 10 post-partum. Seventeen untreated cows served as controls. The median times to first ovulation were 27.0 days for the control cows, 22.5 days for those cows treated with 5 μg GnRH every 4 h and 17.0 days for cows treated with 15 μg every 12 h. The latter treatment significantly advanced the time of first ovulation (P < 0.05) relative to controls. This difference had, however, disappeared by the time of the second and third ovulations. Primiparous cows ovulated later (P < 0.01) than the pluriparous cows in the group treated with 5 μg GnRH every 4 h. This was a major reason for the lack of effect of this treatment. Some treated cows were blood sampled at frequent intervals on day 8 to evaluate the LH responses to GnRH injections. The administration of 5 μg GnRH on day 8 did not elicit a pulse of LH which could be distinguished from endogenous pulsatile secretion at this time. The dose of 15 μg on this day did, however, elicit a more defined pulse on some, but not all, occasions.The injection of a small dose of GnRH twice a day from day 5 to day 10 after calving, therefore, advanced the time of first ovulation in dairy cows by 10 days.  相似文献   

18.
Mean concentrations of luteinizing hormone (LH) increase during the follicular phase of the estrous cycle in cows. The working hypotheses in the present study were (1) that increasing concentrations of 17 beta-estradiol (E2) during the follicular phase of the estrous cycle cause an increase in mean concentration of LH by increasing amplitude of pulses of LH, and (2) that increasing E2 concentrations during this stage of the estrous cycle decrease frequency of pulses of LH in bovine females. Day of estrus was synchronized in seventeen mature cows. Treatments were initiated on Day 16 of the experimental estrous cycle (Day 0 = estrus). At Hour 0 (on Day 16), 4 cows were lutectomized. Lutectomy of these cows (EE; n = 4) allowed for endogenous secretion of E2. The remaining cows were ovariectomized at Hour 0 and were assigned to one of three E2 treatments: luteal phase E2 (LE, n = 5), increasing then decreasing E2 (DE, n = 5), and no E2 (NE, n = 3). Cows in the group that received LE were administered one E2 implant at Hour 0, which provided low circulating concentrations of E2 similar to those observed during the luteal phase of the estrous cycle. Cows in the group that received DE were administered one E2 implant at Hour 0, and additional implants were administered at 8-h intervals through Hour 40; then, two implants were removed at Hours 48 and 56, and one implant was removed at Hour 64.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
The plasma LH concentration is believed to be reasonably steady in normal male rats. We found that LH is released in a regular pulsatile fashion. The overall mean concentration of plasma LH in normal male rats was 46.6 +/- 4.4 (mean +/- SEM) ng/ml. The normal male rats showed periodic LH pulses: the mean pulse amplitude was 144.4 +/- 25.5 ng/ml and the inter-peak interval was 22.5 +/- 2.0 min. Each pulse lasted 9.7 +/- 0.8 min. When LH-RH (1 microgram/kg) was injected as a bolus, the peak concentration was attained in 10-30 min reaching a peak concentration of 279.4 +/- 39.6 ng/ml. Distinct pulsatile bursts of plasma LH were discernible during the period of elevated plasma LH concentration. When a higher dose of LH-RH (5 micrograms/kg) was administered, the LH concentration slowly increased to a peak concentration of 400.2 +/- 38.7 ng/ml in 20-40 min. The pulsatile nature of the LH concentration was recognizable with distinct bursts. We have observed that: (a) normal male rats release LH in a pulsatile fashion with an approximate 20-min inter-peak interval; (b) mean LH pulses last less than 10 min, and (c) the LH pulses are visible even with elevated LH and LH-RH concentrations in the general circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号