首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为改善扩展青霉FS1884碱性脂肪酶的活性及酶学性质,利用连续两轮易错PCR对扩展青霉FS1884脂肪酶基因PEL进行随机突变,在大肠杆菌JM109中构建突变文库。含突变脂肪酶基因的重组质粒电击转化巴斯德毕赤酵母GS115,经过YPOM板初筛和橄榄油检验板复筛,获得一株酶活性提高的脂肪酶突变体:PEL-ep25-GS。与野生型脂肪酶PEL-GS相比,在最适温度40℃、pH9.4时突变体的酶活力是野生型酶的1.3倍。测序结果表明:该突变体第253位氨基酸发生了突变,由赖氨酸变成蛋氨酸。  相似文献   

2.
P197E与ep8叠加突变对扩展青霉脂肪酶热稳定性的影响   总被引:1,自引:0,他引:1  
为提高脂肪酶的热稳定性,作者利用重叠延伸PCR对扩展青霉脂肪酶(PEL)基因进行了体外定点突变,构建了P197E(即将第197位的脯氨酸突变为谷氨酸)与随机突变体ep8叠加突变的重组质粒pPIC3.5K-ep8-P197E。将该质粒电转化至毕赤酵母Pichiapastoris GS115中,进行异源表达。与野生型酶和单点突变酶PEL-ep8的酶学性质比较,结果表明:叠加突变体PEL-ep8-P197E在40°C温育处理30min后,残余酶活分别比野生型PEL和随机突变体PEL-ep8提高了42.13%和37.3%。叠加突变体PEL-ep8-P197E的Tm值为41.51°C,比野生型酶PEL提高了2.81°C,比随机突变体脂肪酶PEL-ep8提高了2.25°C。通过对脂肪酶PEL的叠加突变,提高了该酶的热稳定性,并为结构与功能的进一步研究提供了材料。  相似文献   

3.
扩展青霉脂肪酶K56R叠加突变对热稳定性的影响   总被引:1,自引:0,他引:1  
目的:扩展青霉脂肪酶随机突变体ep8是一株热稳定性比野生型有所提高的突变体.获得热稳定性提高的优良菌株.方法:在ep8的基础上利用重叠延伸PCR构建叠加突变重组质粒pPIC3.5K-ep8一K56R,将该质粒电转毕赤酵母(Pichia paaoris)GS115进行异源表达.结果:该叠加突变脂肪酶在毕赤酵母中获得了活性表达.15%SDS-PACE结果分析表明突变脂肪酶PEL-ep8-K56R-GS分子量与野生型PEL-GS一致,约为28kDa.叠加突变脂肪酶在37℃时酶活为852U/mL、野生型为760u/mL、随机突变体为824u/mL,叠加突变体酶活相比野生型提高了21.1%,相比随机突变体提高了3.4%.热稳定性分析数据表明叠加突变脂肪酶Tm值为40.1℃、野生型为38.7℃、随机突变体为39.9℃,Tm值相比野生型提高了1.4℃,相比随机突变体提高了0.2℃.  相似文献   

4.
定向进化技术改良β-糖苷酶的低聚糖合成性能   总被引:2,自引:0,他引:2  
对携带糖苷酶基因pBBGly的质粒pBtac2进行易错PCR定向进行研究,以改良其合成低聚糖催化性能。来源于Thermus thermophilus的耐高温β-糖苷酶,通过一轮易错PCR随机突变和限制性酶切再连接介导的体外基因重组,获得了两株高转糖基活性的突变酶:N339TF401S和F401S。它们能以天然糖类为糖基受体,低聚糖的合成得率分别为48%和62%,是野生型酶的6~8倍,而底物的水解活力只有野生型酶的0.08%和1.3%。另外,在突变酶的酶反应中,糖基受体对供体的水解反应有显著的促进作用,而野生型酶没有此特征。并且它们的催化水解动力学特征也明显区别于野生酶,水解反应初始浓度对速度关系呈一条直线。  相似文献   

5.
目的:将来源于简单节杆菌的3-甾酮-△~1-脱氢酶(3-ketosteroid-Delta(1)-dehydrogenase,KSDD)在大肠杆菌中进行表达,获得具有活性的脱氢酶;利用计算机预测KSDD的三级结构,并通过定点突变确定酶的关键位点以期优化脱氢酶的活性及性质。方法:克隆简单节杆菌编码KSDD的基因ksdd构建原核表达载体,以Escherichia coli BL21(DE3)为表达宿主构建重组菌并诱导表达,HPLC法检测重组酶催化4-AD脱氢的转化率;通过SWISS-MODEL同源建模分析KSDD结构,对预测的催化关键位点氨基酸残基进行定点突变并研究突变后重组酶的活性变化。结果:成功构建了表达脱氢酶KSDD的重组菌E.coli pET-22-ksdd,21℃下诱导表达后,重组酶对4-AD的转化率为27%;通过SWISS-MODEL同源建模预测出脱氢酶结构并对4个关键位点进行定点突变设计,获得突变子Y120R、Y320L、Y488F和G492Y。突变子Y120R和Y488F失活,证明其为酶的活性位点;突变子Y320L的转化率与野生型基本一致,但37℃反应条件下稳定性有所提高;突变子G492Y对4-AD的转化率是野生型的1.2倍,37℃条件下稳定性有所提高,是突变后氨基酸位点疏水性增加和周围静电作用改变所导致。结论:目前对简单节杆菌3-甾酮-△~1-脱氢酶结构分析及催化机理相关的研究较少,本研究验证了KSDD的活性位点,优化了酶的稳定性,为进一步对酶的性质进行定向改造打下了基础。  相似文献   

6.
谷氨酸脱羧酶(Glutamate decarboxylase,GAD)是用于催化L-谷氨酸脱羧合成γ-氨基丁酸(γ-aminobutyrate,GABA)的唯一酶,提高GAD的催化活力或热稳定性,有利于GABA的高效制备和生产。以热稳定性和活性为筛选目标,通过研究短乳杆菌GAD1407三维模拟结构的拉氏图,确定不稳定氨基酸残基位点K413,采用定点突变的方法构建该位点的突变体,并测定野生型酶和突变酶的热稳定性和活力。结果表明突变酶K413A和突变酶K413I分别在热稳定性和酶活力上获得了提高,突变酶K413A在50℃的半衰期为105 min,是野生酶的2.1倍;突变酶K413I热稳定性没有明显的提高,但其酶活力却得到了有效提高,约为野生型的1.6倍。因此,通过拉氏图提供的结构信息可为利用理性设计提高GAD活性和热稳定性提供指导。  相似文献   

7.
植酸酶phyAm基因结构延伸突变改善酶的热稳定性   总被引:9,自引:0,他引:9  
将来源于黑曲霉N25的植酸酶基因phyA^m重组于大肠杆菌表达载体pET-30b(+),以重组表达载体pET30b-FphyA^e为模板经PCR扩增获得结构延伸突变植酸酶基因phyA^m(在植酸酶基因C端增加了来源于pET-30b-FphyA^m载体上13氨基酸残基)。含突变基因的重组表达载体pPIC9k-phyA^e在GS115酵母中表达。纯化的突变酶pp-NP^e与野生型酶PP-NP^m-8相比:PP-NPA^e的最适反应温度上升了3气,75℃处理10min,热稳定性提高21%,比活力略有提高。最适反应pH为5.6,有效pH范围pH4,6到pH6.6。比未突变酶扩大了0.4单位。  相似文献   

8.
利用重叠延伸PCR法对扩展青霉碱性脂肪酶(PEL)基因进行体外定点突变,并将含突变基因的重组质粒pAO815-ep8-R182K在毕赤酵母(Pichiapastoris)GS115中进行表达。叠加突变体PEL-ep8-R182K表达产物与野生型PEL、PEL-ep8比较实验表明:叠加突变体表达蛋白PEL-ep8-R182K最适反应温度与野生型PEL、PEL-ep8一致,均为40℃;热稳定性与野生型相似,比PEL-ep8降低2.25℃。但是,在比活上,PEL-ep8-R182K与PEL-ep8、野生型PEL相比,其比酶活分别提高了14.03%和3.86%。  相似文献   

9.
李娜  徐梅  杨宇  张宏杰  薛雁  王宏英  薛百忠 《蛇志》2013,25(3):257-259
目的 建立检测重组定点突变巴曲酶原液中外源性DNA残留量的方法.方法 从重组定点突变巴曲酶酵母工程菌提取基因组DNA作为模板,制备地高辛标记探针.此探针与样品进行点样杂交,并进行显色反应.结果 3批重组定点突变巴曲酶原液中,每人份剂量的宿主DNA残留量均<10 ng.结论 该方法检测灵敏度较好,特异性较强,可用于重组定点突变巴曲酶的检测.  相似文献   

10.
D92P点突变对扩展青霉碱性脂肪酶最适作用温度的改善   总被引:2,自引:0,他引:2  
利用重叠延伸PCR法对扩展青霉碱性脂肪酶(PEL)基因进行体外定点突变,并构建了含突变基因的重组质粒pPIC3.5K—lip-D92P。将该质粒在毕赤酵母GS115菌株中表达。与野生型表达产物PEL-GS相比较,突变体表达产物PELD92P—GS最适作用温度为45℃,比野生型提高了5℃;其热稳定性与野生型相当;突变体在40℃下的表达量为109U/mL,约为野生型的29%。结果分析表明,Pro替代Asp^92后,可能是由于Pro一级结构的特点,使酶结构更加稳定,在高温下更适于与底物结合。  相似文献   

11.
An evaluation of the stability of several forms (including soluble and two immobilized preparations) of d-amino acid oxidases from Trigonopsis variabilis (TvDAAO) and Rhodotorula gracilis (RgDAAO) is presented here. Initially, both soluble enzymes become inactivated via subunit dissociation, and the most thermostable enzyme seemed to be TvDAAO, which was 3-4 times more stable than RgDAAO at a protein concentration of 30 microg/mL. Immobilization on poorly activated supports was unable to stabilize the enzyme, while highly activated supports improved the enzyme stability. Better results were obtained when using highly activated glyoxyl agarose supports than when glutaraldehyde was used. Thus, multisubunit immobilization on highly activated glyoxyl agarose dramatically improved the stability of RgDAAO (by ca. 15,000-fold) while only marginally improving the stability of TvDAAO (by 15-20-fold), at a protein concentration of 6.7 microg/mL. Therefore, the optimal immobilized RgDAAO was much more stable than the optimal immobilized TvDAAO at this enzyme concentration. The lower stabilization effect on TvDAAO was associated with the inactivation of this enzyme by FAD dissociation that was not prevented by immobilization. Finally, nonstabilized RgDAAO was marginally more stable in the presence of H(2)O(2) than TvDAAO, but after stabilization by multisubunit immobilization, its stability became 10 times higher than that of TvDAAO. Therefore, the most stable DAAO preparation and the optimal choice for an industrial application seems to be RgDAAO immobilized on glyoxyl agarose.  相似文献   

12.
Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.  相似文献   

13.
d-amino acid oxidase from Trigonopsis variabilis (TvDAAO) is a flavoenzyme with high biotechnological and industrial interest. The overexpression and purification of the apoprotein form of a recombinant His-tagged TvDAAO allowed us to go deep into the structural differences between apoenzyme and holoenzyme, and on the cofactor binding and its contribution to enzyme stability. A significant decrease in intrinsic fluorescence emission took place upon FAD binding, associated to cofactor induced conformational transitions or subunit dimerization that could affect the local environment of protein tryptophan residues. Furthermore, acrylamide-quenching experiments indicated that one of the five tryptophan residues of TvDAAO became less accessible upon FAD binding. A K(d)=1.5+/-0.1x10(-7) M for the dissociation of FAD from TvDAAO was calculated from binding experiments based on both quenching of FAD fluorescence and activity titration curves. Secondary structure prediction indicated that TvDAAO is a mixed alpha/beta protein with 8 alpha-helices and 14 beta-sheets connected by loops. Prediction results were in good agreement with the estimates obtained by circular dichroism which indicated that both the apoenzyme and the holoenzyme had the same structural component ratios: 34% alpha-helix content, 20% beta-structure content (14% antiparallel and 6% parallel beta-sheet), 15% beta-turns and 31% of random structure. Circular dichroism thermal-transition curves suggested single-step denaturation processes with apparent midpoint transition temperatures (T(m)) of 37.9 degrees C and 41.4 degrees C for the apoenzyme and the holoenzyme, respectively. A three-dimensional model of TvDAAO built by homology modelling and consistent with the spectroscopic studies is shown. Comparing our results with those reported for pig kidney (pkDAAO) and Rhodotorula gracilis (RgDAAO) d-amino acid oxidases, a "head-to-head" interaction between subunits in the TvDAAO dimer might be expected.  相似文献   

14.
Vimelysin is a unique metalloproteinase from Vibrio sp. T1800 exhibiting high activity at low temperature and high stability in organic solvents such as ethanol. A 1,821 bp open reading frame of the vimelysin gene encoded 607 amino acid residues consisting of an N-terminal pro-region, a mature enzyme, and a C-terminal pro-region. The mature enzyme region showed 80%, 57% and 35% sequence identity with the mature forms of vibriolysin from V. vulnificus, pseudolysin from Pseudomonas aeruginosa, and thermolysin from Bacillus thermoproteolyticus, respectively. The catalytic residues and zinc-binding motifs of metalloproteinases are well conserved in vimelysin. The vimelysin gene was expressed in E. coli JM109 cells and the recombinant enzyme was purified as a 38-kDa mature form from cell-free extracts. The purified recombinant enzyme is indistinguishable from the enzyme purified directly from Vibrio. To obtain mutants exhibiting higher stability in organic solvents, random mutations were introduced by error-prone PCR and 600 transformants were screened. The N123D mutant exhibits two times higher stability in organic solvents than the wild-type enzyme. A plausible mechanism for the stability of the N123D mutant in organic solvents was discussed based on homology models of vimelysin and the N123D mutant.  相似文献   

15.
A mutant strain, KLAM59, of Pseudomonas aeruginosa has been isolated that synthesizes a catalytically inactive amidase. The mutation in the amidase gene has been identified (Glu59Val) by direct sequencing of PCR-amplified mutant gene and confirmed by sequencing the cloned PCR-amplified gene. The wild-type and altered amidase genes were cloned into an expression vector and both enzymes were purified by affinity chromatography on epoxy-activated Sepharose 6B-acetamide followed by gel filtration chromatography. The mutant enzyme was catalytically inactive, and it was detected in column fractions by monoclonal antibodies previously raised against the wild-type enzyme using an ELISA sandwich method. The recombinant wild-type and mutant enzymes were purified with a final recovery of enzyme in the range of 70–80%. The wild-type and mutant enzymes behaved differently on the affinity column as shown by their elution profiles. The molecular weights of the purified wild-type and mutant amidases were found to be 210,000 and 78,000 Dalton, respectively, by gel filtration chromatography. On the other hand, the mutant enzyme ran as a single protein band on SDS-PAGE and native PAGE with a M r of 38,000 and 78,000 Dalton, respectively. These data suggest that the substitution Glu59Val was responsible for the dimeric structure of the mutant enzyme as opposed to the hexameric form of the wild-type enzyme. Therefore, the Glu59 seems to be a critical residue in the maintenance of the native quaternary structure of amidase.  相似文献   

16.
D-Aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) was strongly inactivated by diethylpyrocarbonate (DEPC). An H67N mutant was barely active, with a kcat/Km 6.3 x 10(4) times lower than that of the recombinant wild-type enzyme, while the H67I mutant lost detectable activity. The H67N mutant had almost constant Km, but greatly decreased kcat. These results suggested that His67 is essential to the catalytic event. Both H69N and H69I mutants were overproduced in the insoluble fraction. The kcat/Km of H250N mutant was reduced by a factor of 2.5 x 10(4)-fold as compared with the wild-type enzyme. No significant difference between H251N mutant and wild-type enzymes in the Km and kcat was found. The Zn content of H250N mutant was nearly half of that of wild-type enzyme. These results suggest that the His250 residue might be essential to catalysis via Zn binding.  相似文献   

17.
The importance of the conserved Tyr352 and Asp380 residues of Bacillus stearothermophilus aminopeptidase II (AP-II) was investigated by site-directed mutagenesis. The wild-type and mutant enzymes were expressed in recombinant Escherichia coli M15 cells and the 45-kD proteins were purified from the cell-free extracts by Ni(2+)-NTA resin. The specific activity for Tyr352 and Asp380 replacements was decreased by more than 3.5-fold. Detailed analysis of the kinetic consequences in the mutant proteins revealed that the K (m) values were increased 1.9- to 2.6-fold with respect to wild-type enzyme. Catalytic efficiencies (k (cat)/K (m)) of mutant proteins were between 3.5- and 31-fold lower than the corresponding value of the wild-type enzyme. Tryptophan emission fluorescence and circular dichroism spectra were nearly identical for wild-type and mutant enzymes. These results indicate that residues Tyr352 and Asp380 are essential for the proper function of AP-II.  相似文献   

18.
An uncharacterized gene from Thermus thermophilus, thought to encode a mannose-6-phosphate isomerase, was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme for L-ribulose isomerization was observed at pH 7.0 and 75°C in the presence of 0.5 mM Cu(2+). Among all of the pentoses and hexoses evaluated, the enzyme exhibited the highest activity for the conversion of L-ribulose to L-ribose, a potential starting material for many L-nucleoside-based pharmaceutical compounds. The active-site residues, predicted according to a homology-based model, were separately replaced with Ala. The residue at position 142 was correlated with an increase in L-ribulose isomerization activity. The R142N mutant showed the highest activity among mutants modified with Ala, Glu, Tyr, Lys, Asn, or Gln. The specific activity and catalytic efficiency (k(cat)/K(m)) for L-ribulose using the R142N mutant were 1.4- and 1.6-fold higher than those of the wild-type enzyme, respectively. The k(cat)/K(m) of the R142N mutant was 3.8-fold higher than that of Geobacillus thermodenitrificans mannose-6-phosphate isomerase, which exhibited the highest activity to date for the previously reported k(cat)/K(m). The R142N mutant enzyme produced 213 g/liter L-ribose from 300 g/liter L-ribulose for 2 h, with a volumetric productivity of 107 g liter(-1) h(-1), which was 1.5-fold higher than that of the wild-type enzyme.  相似文献   

19.
Kallis RP  Ewy RG  Portis AR 《Plant physiology》2000,123(3):1077-1086
Arabidopsis Rubisco was activated in vitro at rates 2- to 3-fold greater by recombinant Arabidopsis 43-kD Rubisco activase with the amino acid replacements Q111E and Q111D in a phosphate-binding loop, G-G-K-G-Q-G-K-S. However, these two mutant enzymes had only slightly greater rates of ATP hydrolysis. Activities of the Q111D enzyme were much less sensitive and those of Q111E were somewhat less sensitive to inhibition by ADP. Both mutant enzymes exhibited higher Rubisco activation activities over the physiological range of ADP to ATP ratios. Enzymes with non-polar, polar, and basic residues substituted at position Gln-111 exhibited rates of Rubisco activation less than the wild-type enzyme. Estimates of the relative affinity of the wild type and the Q111D, Q111E, and Q111S enzymes for adenosine nucleotides by a variety of methods revealed that the nucleotide affinities were the most diminished in the Q111D enzyme. The temperature stability of the Q111D and Q111E enzymes did not differ markedly from that of the 43-kD recombinant wild-type enzyme, which is somewhat thermolabile. The Q111D and Q111E enzymes, expressed in planta, may provide a means to better define the role of the ADP to ATP ratio in the regulation of Rubisco activation and photosynthesis rate.  相似文献   

20.
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号