首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
植食性昆虫的学习行为一般具有习惯性反应、厌恶性学习、联系性学习、敏感性反应、嗜好性诱导几种类型,它们对害虫防治方法的效果具有重要影响。害虫通过嗜好性诱导对栖境中大面积单作农作物造成更大的危害,通过联系性学习可对诱虫植物的效果产生积极或消极的影响。害虫对驱避剂或杀虫剂等产生习惯性反应可降低其防治效果。害虫对寄主植物驱避抗性产生习惯性学习就会加重对作物的为害,产生厌恶性学习则有利于对作物的保护。利用害虫的联系性学习行为,释放前让不育雄虫学习自然交配场所的环境刺激,可增强通过释放不育雄虫控制害虫的防治效果。了解植食性昆虫学习行为对害虫治理的影响有助于研究和发展有效的栖境调控、行为调控等策略和方法。  相似文献   

2.
植食性昆虫与寄主植物关系的本质是化学。植食性昆虫搜寻寄主的嗅觉媒介是植物气味即化学信息物质。在介绍植物气味构成及其扩散模型基础上,阐述了植物气味在地上植食性昆虫成虫、幼虫和地下植食性昆虫搜寻寄主过程中的嗅觉导向作用,并指出了今后相关研究需要注意的问题。从植物与环境因子的关系来看,植物气味包括构成性气味和诱发性气味两类,这两类气味的概念既相联系而又不同。构成性气味组分及构成因植物分类地位等而不同。诱发性气味组分因植食性昆虫取食、植物病原微生物、机械致伤等因子的胁迫而变化,这种变化性状随植物属和/或种、植株生长发育阶段、胁迫因子性质及其作用方式而不同。无论是哪种植物气味,其释放均具有节律性。气味扩散过程比较复杂,扩散状态可用数学模型表征。对于地上植食性昆虫成虫,植物气味对其寄主搜寻行为具有导向特异性,重点分析了这种特异性形成的两个假说;鳞翅目昆虫幼虫,能够利用植物化学信息物质趋向寄主植物或回避非寄主植物;地下植食性昆虫搜寻寄主,既与寄主植物地下组织释放或分泌的次级代谢物有关,又与一些初级代谢物有关。初级代谢物中的CO2,起着“搜寻触发器”作用。有助于增强人们对昆虫与植...  相似文献   

3.
植食性瘿蚊化学通讯中的信息化学物质   总被引:1,自引:0,他引:1  
植食性瘿蚊是重要的农林害虫,其幼虫危害寄主植物,造成植物细胞分裂或异常分化而产生组织畸形,形成虫瘿。该虫具有成虫体小、寿命极短的特性,成虫羽化后可迅速求偶、交配,并随即寻找寄主植物产卵。在植食性瘿蚊短暂的生活史中要完成种群繁衍,配偶选择和寄主定位起着至关重要的作用,而植食性瘿蚊自身产生的信息素、寄主或非寄主产生的他感化学物质在调节其选择配偶和寄主植物过程中起着关键性的化学通讯作用。本文综述了国内外有关植食性瘿蚊化学通讯中信息化学物质的研究进展,包括植食性瘿蚊性信息素的释放、提取、组分鉴定、行为生测,以及寄主植物挥发物引诱活性物质的鉴定、筛选和对植食性瘿蚊定向和产卵行为的影响等方面,并对植食性瘿蚊信息化学物质的进一步研究和应用前景进行了探讨,以期为利用信息化学物质监测和防治植食性瘿蚊提供参考。  相似文献   

4.
全球正经历以变暖为主要特征的气候变化,由此带来的干旱将对农业生态系统造成重要影响。本文综述了干旱胁迫下寄主植物对植食性昆虫及其天敌影响的国内外最新研究进展。在干旱胁迫下,寄主植物物理性状、营养状况和次生代谢物质等均发生变化,这些变化导致植食性昆虫的生存环境和营养物质的获取等方面发生改变,从而影响了害虫生长发育和种群动态。干旱胁迫还导致寄主物候变化与昆虫发生不同步,使害虫缺乏食物。另外干旱也会引起植食性害虫天敌的种群发生变化,从而对植食性昆虫种群数量产生间接的影响。  相似文献   

5.
半闭弯尾姬蜂寄主搜索中的学习行为   总被引:3,自引:3,他引:0  
李欣  刘树生 《昆虫学报》2003,46(6):749-754
研究了半闭弯尾姬蜂寄主搜索过程中的学习行为。结果表明,成虫期之前的饲养寄主所取食的寄主植物对成蜂行为没有影响,而雌蜂早期的短暂经历可对其随后的行为反应产生显著影响,从而对已经历的植物气味表现出显著的嗜好,但这种通过学习所表现出的嗜好又可因新的经历而改变。雌成蜂不仅能对其所经历的虫伤寄主植物释放的信息化合物进行学习,而且对其所经历的寄主幼虫的信息化合物也能进行学习。  相似文献   

6.
昆虫的寄主选择行为受到遗传、可传承的环境因素或学习行为的调控。尽管大量实验已证实昆虫寄主选择中的遗传变异,但在实际中很难将其与温度、营养、条件作用和可传承的环境因素的作用区别开来。一些报道已证实可传承的环境因素会影响昆虫的寄主选择行为。幼虫期和成虫期对寄主的经历可以改变该虫态的取食和产卵寄主偏嗜行为。虽然巴甫洛夫条件反射和神经组织移植实验初步揭示了幼虫经历对成虫气味选择行为的影响,但寄主选择行为中的前印象条件作用尚需进一步验证。在城市垃圾生态系统中,杂食性的蝇类的取食和产卵选择行为较腐食性的蝇类更易受到学习经历的重塑。  相似文献   

7.
昆虫唾液成分在昆虫与植物关系中的作用   总被引:13,自引:4,他引:9  
近年来,人们对于植食性昆虫唾液的深入研究,揭示出其在昆虫与植物的相互关系和协同进化中起到非常重要的作用。植食性昆虫唾液中含有的酶类和各种有机成分,能诱导植物的一系列生化反应,而且这些反应有很强的特异性,与为害的昆虫种类甚至龄期有关。鳞翅目幼虫口腔分泌物(或反吐液)中含有的β-葡糖苷酶、葡萄糖氧化酶等酶类和挥发物诱导素等有机成分,已经证明可以诱导植物的反应; 刺吸式昆虫的取食也可以刺激植物产生反应,但其唾液内的酶类,如烟粉虱的碱性磷酸酶, 蚜虫的酚氧化酶、果胶酶和多聚半乳糖醛酸酶, 蝽类的寡聚半乳糖醛酸酶等是否发挥作用,目前还没有直接的证据。寄主植物对昆虫的唾液成分也有很大的影响,可能是昆虫对不同植物营养成分和毒性成分的适应方式。对昆虫唾液蛋白的分析表明,具有同样类型口器、食物类型接近的昆虫,唾液成分有更多的相似性。研究植食性昆虫的唾液成分,对于阐明昆虫和植物的协同进化关系、昆虫生物型的形成机理、害虫的致害机理,以及指导害虫防治等,有着一定的理论和实际意义。  相似文献   

8.
王晓娟  叶萌  周祖基  宋昆  代勇 《四川动物》2013,32(2):228-231
植食性昆虫主要利用嗅觉、味觉、视觉和触觉等对寄主植物进行选择,而植物挥发物是引导植食性昆虫寄主定向行为的主要因素。利用"Y"型嗅觉仪测试康定虫草蝠蛾Hepialus armoricanus二龄幼虫对适生地的几种植物材料的嗅觉反应;并用欧式距离和Q型聚类法对供试植物进行相似性分析和聚类分析。结果表明:蝠蛾幼虫对几种植物材料表现出强弱不同的趋性反应;根据植物的相似性可将供试植物分为4类,且同一类植物引导蝠蛾幼虫产生相似的嗅觉反应。  相似文献   

9.
潜叶昆虫广泛分布于鳞翅目、双翅目、鞘翅目和膜翅目中,其幼虫潜入叶片内部生活和取食,是一类用于研究植物-昆虫-天敌种间关系和协同进化的重要模式生物。有些潜叶昆虫是重要农林害虫。相比外食性昆虫,在叶内取食的潜叶昆虫幼虫更易受到叶片物理性状的直接影响。叶片的着生位置、朝向、大小、颜色和表皮毛等直接决定潜叶虫成虫的取食和产卵选择,从而影响幼虫的空间分布和寄主适应。叶片的某些物理性状也会直接影响幼虫的取食行为、生长发育和被寄生率。研究叶片物理性状的防御作用以及潜叶昆虫对这些防御的适应,有助于了解潜叶昆虫-寄主植物的协同进化。另一方面,外界环境和遗传育种都有可能改变植物叶片的物理特性,而对潜叶害虫产生抗性,从而实现潜叶害虫的可持续生态控制。  相似文献   

10.
植物与植食性昆虫之间存在着复杂的分子互作.首先,植食性昆虫会利用自身的嗅觉和味觉化学感觉系统,通过对植物挥发性和非挥发性信息化合物的编码与解析,结合对植物颜色、形状等物理信息的感觉与编码,定位及确定寄主植物.其次,植物可以通过位于细胞膜的受体识别植食性昆虫相关模式分子和损伤相关模式分子,启动由早期信号事件和植物激素信号途径介导的防御反应,并由此而影响植食性昆虫的种群适合度.最后,为抵御寄主植物的防御反应,植食性昆虫会通过复杂多样的反防御策略适应或抑制寄主植物的防御反应.本文对如上所述的植物与植食性昆虫分子互作研究进展及由此而开发的一些害虫防控新技术进行了综述.  相似文献   

11.
寄生蜂成虫在寄主搜索过程中的学习行为   总被引:23,自引:8,他引:15  
综述了寄生蜂寄主搜索过程中的学习行为的概念、过程、适应性意义及影响因子。学习是寄生蜂的一种普遍特征,但学习基本上只发生在成虫期,其中联系性学习是一个主要特征。学习可产生启动和嗜好性学习二种效应,在寄生蜂搜索寄主的各个步骤中发挥重要作用,使其在复杂多变的生存环境中可高效地识别和利用各种有用信息,提高搜索效率。学习的潜力及效应可依寄生蜂和寄主的食性专化程度、寄主的发育阶段、寄生蜂自身的生理状态及环境中刺激的性质等因子而变化。对寄生蜂学习行为的了解有助于发展对其行为调控的技术,提高寄生蜂对害虫控制的效能。  相似文献   

12.
Local adaptation to different host plants is important in the diversification of phytophagous insects. Thus far, much evidence of the local adaptation of insects with respect to host use at the physiological level has been gathered from systems involving less mobile insects and/or divergent hosts such as plants belonging to different families or genera. On the other hand, the prevalence of such local adaptation of insects with moderate or high dispersal ability to the intraspecific variation of herbaceous hosts is largely unknown. In the present study, we examined the occurrence and degree of local adaptation of the herbivorous ladybird beetle Henosepilachna pustulosa (Kôno) (Coleoptera: Coccinellidae) to its primary host, the thistle Cirsium boreale Kitam. (Asteraceae), through reciprocal laboratory experiments using beetles and thistles from three locations with a range of approximately 200 km. Concerning the larval developmental ability, obvious patterns of local adaptation to the thistles from respective natal locations were detected, at least in some combinations of beetle populations. Similar tendencies were detected concerning adult feeding acceptance, although the statistical support was somewhat obscure. Overall, our results indicate that the degree of local adaptation of insect species with moderate dispersal ability to conspecific herbaceous hosts is occasionally as strong as that involving less mobile insects and/or heterospecific hosts, indicating the potential of such cryptic local adaptation to promote ecological/genetic differentiation of phytophagous insect populations.  相似文献   

13.
Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host‐related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long‐term adaptation to novel conditions. Using experimental populations of the seed beetle that evolved on ancestral (common bean) or novel (chickpea) host and applying reciprocal transplant at both larval and adult stage on the alternative host plant, we studied the relationship between the initial (plastic) phases of host‐shift and the subsequent stages of evolutionary divergence in life‐history strategies between populations exposed to the host‐shift process. After 48 generations, populations became well adapted to chickpea by evolving the life‐history strategy with prolonged larval development, increased body mass, earlier reproduction, shorter lifespan and decreased plasticity of all traits compared with ancestral conditions. In chickpea‐adapted beetles, negative fitness consequences of low plasticity of pre‐adult development (revealed as severe decrease in egg‐to‐adult viability on beans) exhibited mismatch with positive effects of low plasticity (i.e. low host sensitivity) in oviposition and fecundity. In contrast, beetles adapted to the ancestral host showed high plasticity of developmental process, which enabled high larval survival on chickpea, whereas elevated plasticity in adult behaviour (i.e. high host sensitivity) resulted in delayed reproduction and decreased fecundity on chickpea. The analysis of population growth parameters revealed significant fluctuation during successive phases of the host‐shift process in A. obtectus.  相似文献   

14.
The spatial arrangement of suitable host plants in the field may significantly constrain insects to find optimal hosts. Plant neighbours around a focal host plant can either lead to lower (associational resistance) or higher (associational susceptibility) herbivore loads. We tested whether the spatial arrangement of hosts of different suitability for the larval development of the shoot-base boring weevil Apion onopordi affects oviposition decisions in the field. Host plants in our study were healthy creeping thistles (Cirsium arvense; suboptimal hosts) and thistles infected by a rust pathogen (Puccinia punctiformis; optimal hosts). For analysis, we used nearest neighbour methods that disentangle the spatial distribution of organisms that are dependent on the position of other species (e.g. phytophagous insects and their host plants). Although theory predicts that the small-scale spatial infestation pattern can have major consequences for the population dynamics in insect–plant systems, field studies quantifying spatial pattern of phytophagous insects are rare.

The spatial arrangement of host plants clearly influenced oviposition pattern in A. onopordi. In contrast to previous studies, we demonstrated that not the rust infection itself determined if a plant was infested by weevils, but rather the density of rusted shoots within a certain neighbourhood. We found strong indications for associational susceptibility of healthy thistle shoots to weevil oviposition when growing in the neighbourhood of rusted thistles. Weevil-infested plants were spatially aggregated, indicating that A. onopordi is limited in its dispersal ability within patches. Other stem-boring insects on creeping thistle were affected in their oviposition decisions by other factors than A. onopordi. Thus, it may be difficult to find general rules for oviposition choice in phytophagous insects.

Our study showed that the spatial arrangement of host plants in the field critically determines oviposition choice and should thus be included as constraint in theories of optimal host selection.  相似文献   


15.
Abstract.  1. In holometabolous insects, learning has been demonstrated in both larval and adult stages. Whether learning can be retained through metamorphosis from larva via pupa to adult has long been a subject of debate. The present study is designed to distinguish between preimaginal and imaginal conditioning in the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using oviposition preference tests on females exposed to various types of learning experiences during immature and adult stages.
2. Cohorts of test insects were reared from egg to pupa on an artificial diet, or on one of two host plants, Chinese cabbage, Brassica campestris L. ssp. pekinensis , and common cabbage, Brassica oleracea L. var. capitata . The ensuing females reared on the three kinds of food showed similar oviposition preference between the two plants. A brief experience of the less preferred host, common cabbage, by adults slightly increased their preference for this plant.
3. Cohorts of test insects were reared from egg to pupa on an artificial diet with or without the addition of a neem-based oviposition deterrent (Neemix® 4.5). Larval feeding experience did not alter oviposition response to the deterrent. However, emergence conditioning and early adult learning, achieved through experience of a residue of the deterrent carried over from the larval food on pupal cuticle and cocoons, altered oviposition preference significantly.
4. The combined results revealed no evidence of preimaginal conditioning in this insect but a strong effect of emergence conditioning and early adult learning on oviposition preference.  相似文献   

16.
The connection between adult preferences and offspring performance is a long‐standing issue in understanding the evolutionary and ecological forces that dictate host associations and specialization in herbivorous insects. Indeed, decisions made by females about where to lay their eggs have direct consequences for fitness and are influenced by interacting factors including offspring performance, defence and competition. Nonetheless, in addition to these attributes of the offspring, a female's choices may be affected by her own prior experience. Here we examined oviposition preference, larval performance and the role of learning in the monarch butterfly, Danaus plexippus, which encounters diverse milkweed host species across its broad range and over the course of migration. Monarch females consistently preferred to oviposit on Asclepias incarnata subspecies pulchra. This plant, however, was associated with poor caterpillar growth, low sequestration of toxins and the highest plant defences (latex and trichomes). We examined flexibility in this apparently maladaptive preference by testing the impact of previous experience and competition on preference. Experience laying on an alternative plant species enhanced preference for that species in contrast to A. i. pulchra. In addition, presence of a (competing) conspecific caterpillar on A. i. pulchra had a strongly deterrent effect and reversed host plant preferences. Thus, monarch butterflies exhibit preferences contrary to what would be expected based on offspring development and sequestered defences, but their preferences are altered by learning and competition, which may allow butterflies to shift preferences as they encounter diverse milkweeds across the landscape. Learning and perception of threats (i.e. competition or predation) may be critical for most herbivorous insects, which universally experience heterogeneity among their potential host plants.  相似文献   

17.
Host specialization plays a key role in the extreme diversification of phytophagous insects. Whereas proximate mechanisms of specialization have been studied extensively, their consequences for species divergence remain unclear. Preference for, and performance on hosts are thought to be a major source of divergence in phytophagous insects. We assessed these major components of specialization in two moth species, the European corn borer (ECB) and the Adzuki bean borer (ABB), by testing their oviposition behaviour in different conditions (choice or no‐choice set‐ups) and their performances, by reciprocal transplant at the larval stage on the usual host and an alternative host plant. We demonstrated that both ABB and ECB have a strong preference for their host plants for oviposition, but that relative larval performances on the usual host and an alternative host differed according to the experiment and the trait considered (weight or survival). Finally, we show for the first time that the preference for maize in ECB conceals a strong avoidance of mugwort. The differences in performance, attraction and avoidance between ECB and ABB are discussed in the light of the underlying mechanisms and divergence process.  相似文献   

18.
The Life and Death of Hopkins' Host-Selection Principle   总被引:6,自引:0,他引:6  
Hopkins' host-selection principle (HHSP) refers to the observation that many adult insects demonstrate a preference for the host species on which they themselves developed as larvae. The meaning of HHSP has changed significantly since its first proposal in 1916. This review considers how the meaning of HHSP has changed over time and considers the various mechanisms that could contribute to a behavioral bias for the developmental host. The assumption that HHSP implies that the behavior of adult insects is conditioned by larval experience has resulted in widespread condemnation of HHSP. Despite a great deal of attention, there is still very little convincing evidence for preimaginal conditioning of host choice in insects. But growing evidence indicates that genetic variation in behavior and conditioning during the life span of an adult insect can contribute to a preference for the host on which an insect developed. Insects can acquire adult oviposition or feeding preferences through exposure to chemical residues from the environment of earlier life history stages. The concepts of host races and host fidelity have become familiar and acceptable, while the association of HHSP with preimaginal conditioning has led to a general rejection of the term.  相似文献   

19.
Host plant quality for insects used in weed biological control influences their performance and hence their ability to suppress target host populations. Determining the specific response of these insects to the quality of their host is important because phytophagous insects have variable tolerances of the different constituents of host plant quality, most notably dietary nitrogen (N), but also other physical and chemical components. The invasive aquatic weed Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae) was cultivated under varying nutrient conditions to determine the influence of plant quality on immature survival, development, larval mining, reproductive output and adult longevity of a leaf-mining fly Hydrellia purcelli Deeming (Diptera: Ephydridae). Additionally, field-collected H. verticillata was included in the investigations to assess the potential performance of H. purcelli in the field. Variation in plant tissue N and phosphorus (P) concentrations had no effects on larval survival, female fecundity, or adult longevity, but high levels of N and P were associated with reduced immature development times and higher body mass of females. Overall, plant quality factors not measured in this study appeared to have a greater impact on the performance of the fly, rather than dietary N and P. The results provided insights into optimal mass-rearing conditions for H. purcelli and the potential performance of the fly in the field in South Africa. Furthermore, the results demonstrate the importance of considering other aspects of plant quality for insect agents, in addition to dietary N and P, when developing mass-rearing protocols or predicting their potential impact in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号