首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 185 毫秒
1.
Diversity in vertebrate brain size and composition is thought to arise from either developmental constraints that cause coordinated changes between brain regions or a mosaic model, whereby changes in individual brain regions are independent of changes in other brain regions. These two mechanisms were tested in birds using multiple regression analyses. Across 13 orders, significant correlations were present between some brain regions, but not all. Most of the correlated changes reflect the connectivity between different brain components, such that regions with the most interconnections are correlated with one another but not other brain regions. Whether mosaic changes are characteristic of brain regions or systems in birds, however, to our knowledge, remains to be investigated.  相似文献   

2.
mAb secreting hybridomas were produced from mice hyperimmune to the model Ag tobacco mosaic virus protein. Six mAb were selected for their ability to bind synthetic peptides corresponding to amino acid residues 103-112 and 97-107 of tobacco mosaic virus protein. These mAb were analyzed for their fine specificity by measuring binding to synthetic analogs of the decapeptide, and cDNA sequences encoding the mAb V regions were determined. These analyses revealed that a wide range of different V regions are capable of binding with the same decapeptide epitope, and that these antibody sequence differences generally coincided with different binding fine specificities. This diverse antibody response with specificity for the same epitope demonstrates both the breadth of potential of the immune system and the lack of exclusivity in specific protein:protein interactions.  相似文献   

3.
Degenerate Potyviridae primers were used to amplify and sequence the 3′‐terminal regions of viruses from traditional and modern cultivars of sugarcane with mosaic disease growing in different areas of Yunnan province, China. Seven samples contained Sugarcane mosaic virus (SCMV), 11 contained Sorghum mosaic virus (SrMV) and two contained both viruses. SCMV was only isolated from traditional cultivars. In a phylogenetic analysis of the partial NIb and complete coat protein coding regions, most SCMV isolates formed a distinctive phylogenetic cluster (named SO) that otherwise contained only three Vietnamese isolates. SCMV variation seems mostly related to host genotype. In the same analysis, the SrMV isolates formed three major groups, one of which is reported for the first time, but the significance of the grouping is unclear.  相似文献   

4.
The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.  相似文献   

5.
The development of patterned mosaic landscapes: an overview   总被引:1,自引:0,他引:1  
The articles in this special issue review what is known about the development of wetlands in landscapes and of patterns in various kinds of wetlands around the world with an emphasis on wetlands with treed patches (tree islands) like the Okavango Delta and the Everglades. Wetlands with treed patches have much in common with their terrestrial counterparts in arid regions. Both are mosaic landscapes in which the patches of trees are distributed in a non-random fashion in a matrix of herbaceous vegetation. In these landscapes, the treed patches are both biogeochemical and biodiversity hotspots. They are biogeochemical hotspots because treed patches preferentially acquire nutrients and other limited resources, like water in arid regions. They are biodiversity hotspots because treed patches are habitats with environmental and structural characteristics very different from those of the herbaceous matrix in which they are found. Consequently, treed patches attract and support populations of many plant and animal species that otherwise would not be found in the area. Studies and simulation models of arid mosaic landscapes have generated a number of hypotheses about the structure and functions of mosaic landscapes, most of which have yet to be tested, especially in wetland mosaic landscapes.  相似文献   

6.
Three synthetic genes for the production of anti-sense RNA to different regions of the cucumber mosaic virus (CMV) genome were constructed using virus-derived double-stranded cDNA coupled to a promoter sequence from cauliflower mosaic virus. The genes were used to transform tobacco plants by a Ti plasmid vector. Transgenic plants obtained with the three constructs produced anti-sense RNA at different levels. Plants expressing each of the three anti-sense RNAs were inoculated with CMV and their sensitivity to the virus infection was compared with the non-transformed plants. Only one plant line which expressed relatively low levels of one of the anti-sense RNAs showed resistance to CMV but other plants expressing the same or the other two antisense RNAs had similar sensitivity to CMV infection as the non-transformed plants.  相似文献   

7.
A major focus of comparative neuroanatomy has been on whether the mammalian brain evolves in a concerted or a mosaic fashion. Workers have examined variation in the volume of different brain regions across taxa to test the degree to which selection is constrained by the timing of events in neural development. Whether a conserved neurogenetic program in the mammalian brain constrains the distribution of different cell types, however, has not yet been investigated. Here we tested for evidence of evolutionary constraints on the densities of different cell types in the primary visual cortex (V1) and the hippocampus in 37 primate and 21 carnivore species. Cellular densities in V1 and the hippocampus scale isometrically with respect to one another in carnivores, as predicted by the concerted evolution hypothesis. In primates, however, cellular distributions in the hippocampus and primary visual cortex show no correlations, which supports the hypothesis of mosaic brain evolution. We therefore provide evidence for the presence of constraints controlling the adult densities of different cell types in disparate regions of the mammalian brain, but also for specializations along the primate lineage. We propose that adaptations to modularity at the cellular level may carry a deep phylogenetic signal.  相似文献   

8.
Cucumber mosaic virus (CMV) and brome mosaic virus (BMV) are isometric plant viruses. Although biologically distinct, they share many common chemical properties. An analysis of the partial genomic RNA sequence available for these two viruses reveals that they are evolutionarily related. Different segments of the genome exhibit different evolutionary rates. The coat proteins, which serve as carriers of genetic material, possess little or no homology. In contrast, the 3a proteins show over 35% homology. The non-coding regions of the genome also exhibit extensive but variable homology suggesting the functional importance of the nucleic acid.  相似文献   

9.
The reactions of swede (Brassica napus) to infection by turnip mosaic virus   总被引:1,自引:0,他引:1  
Turnip mosiac virus (TuMV) and cucumber mosaic virus (CMV) were the only viruses commonly isolated from naturally diseased swedes (Brassica napus) showing leaf mosaic and leaf and root necrosis. Only TuMV caused these symptoms when re-inoculated to swede. TuMV-infected plants showed a severe loss in leaf (55%) and root (63%) fresh weight after 140 days. Systemic leaf symptoms in infected swede plants varied greatly, but were predominantly necrotic (N) or mosaic (M). Plants were classified into one of seven reaction classes ranging from slight or severe necrosis, and mosaics with and without slight veinal necrosis. Swede cultivars differed markedly in their reaction to TuMV and contained different proportions of N- or M-reacting plants. The reactions of progeny of four resistant cv. Bangholm plants were separately inherited; progeny of two plants reacting either symptomlessly or necrotically and those of the other two plants developing mosaic symptoms only. Five isolates of TuMV from swede crops in different regions caused similar reactions but differed in virulence in the progeny of a self-pollinated resistant swede plant.  相似文献   

10.
Via S  West J 《Molecular ecology》2008,17(19):4334-4345
Early in ecological speciation, the genomically localized effects of divergent selection cause heterogeneity among loci in divergence between incipient species. We call this pattern of genomic variability in divergence the 'genetic mosaic of speciation'. Previous studies have used F(ST) outliers as a way to identify divergently selected genomic regions, but the nature of the relationship between outlier loci and quantitative trait loci (QTL) involved in reproductive isolation has not yet been quantified. Here, we show that F(ST) outliers between a pair of incipient species are significantly clustered around QTL for traits that cause ecologically based reproductive isolation. Around these key QTL, extensive 'divergence hitchhiking' occurs because reduced inter-race mating and negative selection decrease the opportunity for recombination between chromosomes bearing different locally adapted QTL alleles. Divergence hitchhiking is likely to greatly increase the opportunity for speciation in populations that are sympatric, regardless of whether initial divergence was sympatric or allopatric. Early in ecological speciation, analyses of population structure, gene flow or phylogeography based on different random or arbitrarily chosen neutral markers should be expected to conflict--only markers in divergently selected genomic regions will reveal the evolutionary history of adaptive divergence and ecologically based reproductive isolation. Species retain mosaic genomes for a very long time, and gene exchange in hybrid zones can vary dramatically among loci. However, in hybridizing species, the genomic regions that affect ecologically based reproductive isolation are difficult to distinguish from regions that have diverged for other reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号