首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One- and two-parameter quantitative structure toxicity relationship (QSTR) equations were obtained to describe the cytotoxicity of isolated rat hepatocytes induced by 23 catechols in which LD(50) represents the catechol concentration required to induce 50% cytotoxicity in 2 h. A QSTR equation logLD(50) (microM = - 0.464(+/-0.065) log P + 3.724(+/-0.114) (n = 20, r(2) = 0.740, s(y,x) = 0.372, P < 1 x 10(-6), outliers: 4-methoxycatechol, 3-methoxycatechol, L-dopa) was derived where logP represents octanol/water partitioning. Outliers were determined by adopting a statistical method to standardize the identification of outliers. When pK(a1), the first ionization constant, was considered as a contributing parameter a two-parameter QSTR equation was derived: logLD(50) (microM = - 0.343(+/-0.058) log P - 0.116(+/-0.041) pK(a1)+4.389 (+/-0.315) (n = 22, r(2) = 0.738, s(y,x) = 0.375, P < 0.01, outlier: 4-methoxycatechol). Replacing logP with logD(7.4), the partition coefficient at pH 7.4, improved the first correlation by limiting the outlier to 4-methoxycatechol: logLD(50) (microM)=-0.252(+/-0.039) logD(7.4)+3.168(+/-0.090) (n = 22, r(2) = 0.671, s(y,x) = 0.420, P < 1 x 10(-5). In this study, 4-methoxycatechol (readily autooxidizable) was found to be an outlier for all QSTR equations derived. These findings point to lipophilicity and pK(a1) as two important characteristics of catechols that can be used to predict their cytotoxicity towards isolated rat hepatocytes. The catechols with the higher lipophilicity/distribution coefficient, the lower degree of ionization and the higher pK(a(catechol)) were more toxic towards hepatocytes than the other catechols.  相似文献   

2.
Quantitative structure activity relationship (QSAR) equations were obtained to describe the cytotoxicity of 22 polyphenols using toxicity (logLD50) representing the concentration for 50% cell survival in 2 h for isolated rat hepatocytes, log P representing octanol/water partitioning, and/or E(p/2) representing redox potential. One- and two-parameter equations were derived for the quantitative structure toxicity relationships (QSTR) for polyphenol induced hepatocyte cytotoxicity: e.g. log C(hepatocyte) (microM)=-0.65(-0.08)log P+4.12(-0.15) (n=19, r(2)=0.80, s=0.33, P<1 x 10(-6)). One- and two-parameter QSAR equations were also derived to describe the inhibitory effects of 13 polyphenols on tumor cell growth when incubated with HeLa cells for 3 days: e.g. log C(tumor) (microM)=-0.34(+/-0.04)log P+2.40(+/-0.07) (n=11, r(2)=0.90, s=0.13, P<1 x 10(-5)). These findings point to lipophilicity as a major characteristic determining polyphenol cytotoxicity. The E(p/2) also played a significant role in polyphenol cytotoxicity towards both cell types: e.g. log C(hepatocyte) (microM)=-0.60(+/-0.06)log P+2.01(+/-0.43)E(p/2) (V)+3.86(+/-0.12) (n=9, r(2)=0.96, s=0.15, P<0.005). The involvement of log P and E(p/2) could be explained if polyphenol cytotoxicity involved the formation of radicals, which interacted with the mitochondrial inner membrane resulting in a disruption of the membrane potential.  相似文献   

3.
Phenol and 14 substituted-phenols were tested for their ability to impair epithelial cell membrane integrity in WB rat liver cells as determined by an increase in lactate dehydrogenase release. Two quantitative structure-activity relationship (QSAR) regression equations were developed which showed that separate mechanisms of phenolic cytotoxicity are important - nonspecific toxicity due to hydrophobicity and formation of phenoxyl radicals. The equations most predictive of phenol toxicity are denoted as log1/C=-0. 98sigma(+)+0.77logP+0.23 or log1/C=-0.11BDE+0.76logP+0.21, respectively, where C is the minimum concentration of substituted-phenol required for a toxic response. P is the octanol-water partition coefficient, sigma(+) is the electronic Hammett parameter and BDE is the OH homolytic bond dissociation energy. In the literature, phenol toxicity correlated to sigma(+) is rare, but there is strong evidence that phenols possessing electron-releasing groups may be converted to toxic phenoxyl radicals. A common feature in a variety of cells is generation of elevated amounts of reactive oxygen species (ROS) associated with a rapid growth rate. The slightly elevated cancer risk associated with the use of Premarin may be due to phenoxyl-type radicals derived from one or more of its components.  相似文献   

4.
Drug development of cucurbitacins requires derivatives that have lower cytotoxicity. Therefore, the effect of structural modification on in vitro cytotoxicity has been investigated. Lipophilicity or chromatographic hydrophobicity index (CHI) was chosen as molecular property. CHI was determined by RP-HPLC in both aqueous acetonitrile and aqueous methanol. Compounds CHI range was wide and better defined in acetonitrile (CHI(ACN)=46-88 and 38-102) than in methanol (CHI(MeOH)=56-78). Higher resolution was achieved in acetonitrile, and higher precision on the shorter C18 column. Cucurbitacins cytotoxicity (IC(50)) was measured on the hepatocyte-derived HepG2 cells. Strong relationship between CHI and logarithmic IC(50) was found. As a result, cytotoxicity increased linearly with increasing hydrophobicity (r>/=0.90). Other lipophilicity parameters, such as logP and ClogP were also estimated. Cytotoxicity correlated well with logP (r=0.95) and slightly with ClogP (r=0.74). The logP and ClogP data showed good correlation with CHI (r>0.92). Overall, alkylation of C1 hydroxyl, unsaturation of C1C2 bond, and acetylation of C25 hydroxyl increased both lipophilicity and cytotoxicity. This assay should prove useful for monitoring cucurbitacin homologues or other drug candidates for their cytotoxicity.  相似文献   

5.
6.
Polychlorobiphenylols (OH-PCBs) were reported as potent inhibitors of estrogen sulfotransferase, thyroid hormone and 3-hydroxybenzo(a)pyrene sulfotransferases. The aim of this study was to examine the effects of selected OH-PCBs on SULT1A1 activity in human liver cytosol, measured with 4microM 4-nitrophenol, a concentration considered to be diagnostic for selectively detecting SULT1A1. All the OH-PCBs studied inhibited the sulfonation of 4-nitrophenol in human liver cytosol. Among the eighteen OH-PCBs studied, 3'-OH-CB3 (4-chlorobiphenyl-3'-ol) was the most potent inhibitor (IC(50): 0.73+/-0.15microM, mean+/-S.D., n=3). The least potent inhibitor studied was 6'-OH-CB35 (3,3',4-trichlorobiphenyl-6'-ol) with IC(50): 49.1+/-10.8microM. The IC(50) values of the other OH-PCBs studied ranged from 0.78 to 3.76microM. Some OH-PCBs with various inhibitory potencies with human liver cytosol were selected for study with recombinant human SULT1A1 and SULT1B1. These OH-PCBs showed more potent inhibition of 4-nitrophenol sulfonation with SULT1A1 than with human liver cytosol. The IC(50) values with human liver cytosol showed a perfect linear correlation with those found with SULT1A1 (r(2)=1), but not with SULT1B1 (r(2)=0.21). The results suggested that in these human samples SULT1A1 was predominantly responsible for the sulfonation of 4-nitrophenol, with very little or no contribution from SULT1B1. The kinetics of inhibition were studied with 4'-OH-CB165, which is similar in structure to OH-PCBs found in human blood. The 4'-OH-CB165 was a mixed noncompetitive-uncompetitive inhibitor (K(i)=1.80+/-0.2microM, K(ies)=0.16+/-0.02microM). Finally, it was demonstrated that the tested OH-PCBs were themselves only slowly sulfonated by human sulfotransferases in the presence of (35)S-PAPS, as measured by the production of (35)S-labeled metabolites. Although this series of 18 OH-PCBs was too small to draw conclusions about structure-potency relationships, this work demonstrated that several OH-PCBs were potent inhibitors of 4-nitrophenol sulfonation but poor substrates in human liver cytosol, and suggested that OH-PCBs may inhibit the sulfation rate of those xenobiotics sulfated by SULT1A1.  相似文献   

7.
A soluble F(1)-ATPase was isolated from the mitochondria of crayfish (Orconectes virilis) gill tissue. The maximal mitochondrial disruption rate (95%) was obtained by sonicating for 4 min at pH 8.6. A 15-fold purification was estimated. The properties for both soluble and membrane-bound enzyme were studied. Both enzyme forms were stable at 4 to -70 degrees C when kept in 20% glycerol. Soluble F(1)-ATPase was more stable at room temperature than membrane-bound enzyme. It displayed a narrower pH profile (pK(1) =6.58, pK(2)=7.68) and more acid pH optimum (7.13) than membrane-bound enzyme (pK(1)=6.42, pK(2)=8.55, optimum pH 7.49). The anion-stimulated activities were in the order HCO(3)(-)>SO(4)(2-)>Cl(-). The apparent K(a) values for soluble enzyme were 11.4, 11.2, and 10.9 mM, respectively, but the K(a) of HCO(3)(-) for membrane-bound enzyme (14.9 mM) was higher than for soluble enzyme. Oligomycin and DCCD inhibited membrane-bound F(1)-ATPase with I(50) of 18.6 ng/ml and 2.2 microM, respectively, but were ineffective in inhibiting soluble enzyme. Both enzyme forms shared identical sensitivity to DIDS (I(50)=12.5 microM) and vanadate (I(50)=9.0 mM). Soluble ATPase was significantly more sensitive to pCMB (I(50)=0.15 microM) and NO(3)(-) (I(50)=28.6 mM) than membrane-bound enzyme (I(50)=1.04 microM pCMB and 81.5 mM NO(3)(-)). In addition, soluble F(1)-ATPase was slightly more sensitive to azide (I(50)=91.8 microM) and NBD-Cl (I(50)=9.18 microM) than membrane-bound enzyme (I(50)=111.6 microM azide and 12.88 microM NBD-Cl). These data suggest a conformational change transmission between F(0) and F(1) sectors and slight conformational differences between soluble F(1) and membrane-bound F(1). In addition, an unmodified F(0) stabilizes F(1) and decreases F(1) sensitivities to inhibitors and modulators.  相似文献   

8.
In spite of extensive studies, the structure-activity relationships in the action of polyphenols against the malaria parasite Plasmodium falciparum are poorly understood so far. As the mammalian cell cytotoxicity of polyphenols shows a negative dependence on the potential of the phenoxyl radical/phenol redox couple (E(2)(7)), due to the involvement of prooxidant events, and a positive dependence on the octanol/water distribution coefficient at pH 7.0 (log D), we examined the role of these parameters in their antiplasmodial in vitro activity. We found that the concentrations of hydroxybenzenes causing 50% inhibition of the growth of P falciparum strain FcB1 (IC50) are described by the regression log IC50 (microM) = 0.36 + 1.81 E(2)(7) (V) - 0.10 log D [n = 11, r2 = 0.760, F(2.8) = 12.03]. The IC50 values of flavonoids (n = 5), comprising a separate less active series, did not depend on their E(2)(7) values, 0.33 V-0.75 V. These findings were similar to the mammalian cell cytotoxicity data. However, the mammalian cell cytotoxicity of hydroxybenzenes showed more pronounced dependence on their E(2)(7) values [delta log CL50/delta E(2)(7) = (6.9 - 5.1) V(-1), where CL50 is the compound concentration for 50% cell survival] than on their antiplasmodial activity. Although it is unclear whether the prooxidant action is the main factor in the antiplasmodial action of polyphenols or not, our data showed that the ease of their oxidation (decrease in E(2)(7)) may enhance their activity. On the other hand, the different sensitivity of the mammalian cell cytotoxicity and the antiplasmodial activity of the hydroxybenzenes to their E(2)(7) values implied that compounds with high oxidation potential may be used as relatively efficient antiplasmodial agents with low mammalian cell cytotoxicity.  相似文献   

9.
Aliphatic thiols are effective as redox buffers for folding non-native disulfide-containing proteins into their native state at high pH values (8.0-8.5) but not at neutral pH values (6-7.5). In developing more efficient and flexible redox buffers, a series of aromatic thiols was analyzed for its ability to fold scrambled ribonuclease A (sRNase A). At equivalent pH values, the aromatic thiols folded sRNase A 10-23 times faster at pH 6.0, 7-12 times faster at pH 7.0, and 5-8 times faster at pH 7.7 than the standard aliphatic thiol glutathione. Similar correlations between thiol pK(a) values and folding rates at each pH value suggest that the apparent folding rate constants (k(app)) are a function of the redox buffer properties (pH, thiol pK(a) and [RSH]). Fitting the observed data to a three-variable model (logk(app)=-4.216(+/-0.030)+0.5816(+/-0.0036)pH-0.233(+/-0.004)pK(a)+log(1-e(-0.98(+/-0.02)[RSH]))) gave good statistics: r2=0.915, s=0.10.  相似文献   

10.
Halobenzenes are ubiquitous environmental contaminants, which are hepatotoxic in both rodents and humans. The molecular mechanism of halobenzene hepatotoxicity was investigated using Quantitative structure-activity relationships (QSAR) and accelerated cytotoxicity mechanism screening (ACMS) techniques in rat and human hepatocytes. The usefulness of isolated hepatocytes for prediciting in vivo xenobiotic toxicity was reassessed by correlating the LC(50) of 12 halobenzene congeners in phenobarbital (PB) induced rat hepatocytes in vitro determined by ACMS to the hepatotoxicities reported in vivo in PB-induced male Sprague-Dawely (SD) rats. A high correlation (r(2)=0.90) confirmed the application of hepatocytes as a "gold standard" for toxicity testing in vitro. QSARs were derived to determine the physico-chemcial variables that govern halobenzene toxicity in PB-induced rat, normal rat and human hepatocytes. We found that toxicity in normal rat and normal human hepatocytes both strongly correlate with hydrophobicity (logP), ease of oxidation (E(HOMO), energy of the highest molecular orbital) and on the asymmetric charge distribution according to arrangement of halogen substituents (dipole moment, mu). This suggests that halobenzene interaction with cytochrome P450 for oxidation is the metabolic activating path for toxicity and is similar in both species. In PB-induced rat hepatocytes the QSAR derivation is changed, where halobenzene toxicity strongly correlates to logP and dipole moment, but not E(HOMO). The changed QSAR suggests that oxidation is no longer the rate-limiting step in the cytotoxic mechanism when CYP2B/3A levels are increased, confirming CYP450 oxidation as the metabolic activating step under normal conditions.  相似文献   

11.
Norcantharidin (3) is a potent PP1 (IC(50)=9.0+/-1.4 microM) and PP2A (IC(50)=3.0+/-0.4 microM) inhibitor with 3-fold PP2A selectivity and induces growth inhibition (GI(50) approximately 45 microM) across a range of human cancer cell lines including those of colorectal (HT29, SW480), breast (MCF-7), ovarian (A2780), lung (H460), skin (A431), prostate (DU145), neuroblastoma (BE2-C), and glioblastoma (SJ-G2) origin. Until now limited modifications to the parent compound have been tolerated. Surprisingly, simple heterocyclic half-acid norcantharidin analogues are more active than the original lead compound, with the morphilino-substituted (9) being a more potent (IC(50)=2.8+/-0.10 microM) and selective (4.6-fold) PP2A inhibitor with greater in vitro cytotoxicity (GI(50) approximately 9.6 microM) relative to norcantharidin. The analogous thiomorpholine-substituted (10) displays increased PP1 inhibition (IC(50)=3.2+/-0 microM) and reduced PP2A inhibition (IC(50)=5.1+/-0.41 microM), to norcantharidin. Synthesis of the analogous cantharidin analogue (19) with incorporation of the amine nitrogen into the heterocycle further increases PP1 (IC(50)=5.9+/-2.2 microM) and PP2A (IC(50)=0.79+/-0.1 microM) inhibition and cell cytotoxicity (GI(50) approximately 3.3 microM). These analogues represent the most potent cantharidin analogues thus reported.  相似文献   

12.
Twenty-five analogs of D-glucose were examined as reversible inhibitors of yeast alpha-glucosidase (EC 3.2.1.20). The K(i) values range from 0.38 mM for 6-deoxy-D-glucose (quinovose) to 1.0 M for D-lyxose at pH=6.3 (0.1 M NaCl, 25 degrees ). All the monosaccharides and the three disaccharides (maltose, isomaltose and alpha,alpha-trehalose) were found to be linear competitive inhibitors with respect to alpha-p-nitrophenyl glucoside (pNPG) hydrolysis. Multiple inhibition analysis reveals that there are at least three monosaccharide binding sites on the enzyme. One of these can be occupied by glucose [K(i)=1.8(+/-0.1) mM], one by D-galactose [K(i)=164(+/-11) mM] and one by D-mannose [K(i)=120(+/-9) mM]. The pH dependence for glucose binding closely follows that of V/K [pK(a1)=5.55(+/-0.15), pK(a2)=6.79(+/-0.15)], but the binding of mannose does not. Although the glucose subsite can be occupied simultaneously with the mannose or galactose subsites in the enzyme-product complex, no transglucosylation can be detected between pNPG and either mannose or galactose. This suggests that neither of these nonglucose subsites can be occupied in a productive manner in the covalent glucosyl-enzyme intermediate.  相似文献   

13.
Reversible inhibitors of beta-glucosidase   总被引:3,自引:0,他引:3  
A variety of reversible inhibitors of sweet almond beta-glucosidase were examined. These included simple sugars and sugar derivatives, amines and phenols. With respect to the sugar inhibitors and, indeed, the various glycoside substrates, the enzyme has what can be considered a "relaxed specificity". No single substituent on glucose, for example, is essential for binding. Replacement of a hydroxyl group with an anionic substituent reduces the affinity while substitution with a cationic (amine) substituent enhances the affinity. Amines, in general, are good inhibitors, binding more tightly than the corresponding alcohols: pKiRNH3+ = 0.645pKiROH + 1.77 (n = 9, r = 0.97). The affinity of a series of 10 primary amines was found to be strongly influenced by substituent hydrophobicity: pKi = 0.52 pi + 1.32 (r = 0.95). The major binding determinant of the glycoside substrates is the aglycon moiety. Thus, the Ki values of phenols are similar in magnitude to the Ks values of the corresponding aryl beta-glucoside. The pH dependence for the inhibition by various phenols indicates that it is the un-ionized phenol which binds to the enzyme when an enzymic group of pKa = 6.8 (+/- 0.1) is protonated. The affinity of the phenol inhibitor is dependent on its basicity with a Br?nsted coefficient for binding of beta = -0.26 (n = 14, r = 0.98). The pH dependence of the binding of two particularly potent beta-glucosidase inhibitors was also examined. 1-Deoxynojirimycin (1,5-dideoxy-1,5-imino-D-glucitol) has a pH-corrected Ki = 6.5 microM, and D-glucono-1,5-lactam has a pH-corrected Ki = 29 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Calcium accumulation by human erythrocyte inside-out vesicles was linear for at least 30 min in the presence of ATP. In untreated inside-out vesicles, 3.76 +/- 1.44 nmol of calcium/min/unit of acetylcholinesterase were transported, compared with 10.57 +/- 2.05 (+/- S.D.; n = 11) in those treated with calmodulin. The amount of calmodulin necessary for 50% activation of Ca2+ accumulation was 60 +/- 22 ng/ml (+/- S.D.; n = 4). The Km (Ca2+) for calmodulin-stimulated accumulation was 0.8 +/- 0.05 microM (+/- S.D.; n = 5) using Ca2+ /ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) buffers, or 25 microM with direct addition of unbuffered calcium. In the absence of calmodulin, these values were 0.4 and 60 microM, respectively, Km (ATP) values of 90 and 60 microM in the presence and absence of calmodulin, respectively, were measured at constant magnesium concentration (3 mM). In the presence of calmodulin, a broad pH profile is exhibited from pH 6.6 to 8.2. Maximal calcium accumulation occurs at pH 7.8. In the absence of calmodulin, the pH profile exhibits a linear upward increase from pH 7.0 to 8.2. The (Ca2+-Mg2+)-ATPase activity, measured under identical conditions, was 2.40 +/- 0.72 nmol of Pi/min/unit of acetylcholinesterase in the untreated vesicles and 11.29 +/- 2.87 nmol of Pi/min/unit of acetylcholinesterase (+/- S.D.; n = 4) in calmodulin-treated vesicles. A stoichiometry of 1.6 Ca2+/ATP hydrolyzed was determined in the absence of calmodulin; in the presence of calmodulin, this ratio was decreased to 0.94 Ca2+/ATP hydrolyzed.  相似文献   

15.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

16.
Numerous synthetic FP-class prostaglandin (PG) analogs stimulated the contraction of isolated non-pregnant female rat uterus in a concentration-dependent manner with the following agonist potencies: bimatoprost acid (17-phenyl-trinor PGF(2alpha); EC(50)=0.68+/-0.06 nM)=cloprostenol (EC(50)=0.73+/-0.01 nM)>travoprost acid (EC(50)=1.3+/-0.07 nM)>latanoprost acid (EC(50)=2.7+/-0.08 nM)>PGF(2alpha) (EC(50)=52+/-11 nM)>unoprostone (UF-021; EC(50)=310+/-101 nM)>S-1033 (EC(50)=610+/-4 nM)>bimatoprost (EC(50)=1130+/-173 nM). The FP-receptor antagonist, AL-8810, antagonized the contractile effects of PGF(2alpha) (K(i)=2.9+/-0.2 microM), travoprost acid (K(i)=0.6+/-0.1 microM) and bimatoprost (K(i)=0.2+/-0.02 microM). Agonist and antagonist potencies for rat uterus contraction by these PGs compared well with their potencies for inducing/blocking functional responses in other systems (r=0.83-0.94) except with bovine iris sphincter (r=0.2; p<0.7). In conclusion, the rat uterus contains functionally active FP-receptors whose activation by a variety of free acid and an amide forms of synthetic PGs leads to the contraction of this tissue and which can be pharmacologically blocked by an FP-receptor antagonist, AL-8810.  相似文献   

17.
A study of a variety of phenolic compounds (simple phenols, estradiol, bisphenol A, diethylstilbesterol) on their action on L1210 leukemia cells led to the formulation of the following QSAR for apoptosis:log 1/C=-3.16 Clog P+2.77 CMR-3.76n=11, r(2)=0.939, s=0.630, q(2)=0.892C is the molar concentration causing 25% apoptosis, Clog P is the calculated octanol/water partition coefficient and CMR is the calculated molecular refractivity. Our results imply the significance of characterization of the phenolic compounds with apoptotic activity and the development of new agents for cancer therapy.  相似文献   

18.
19.
The solvent kinetic isotope effects (SKIE) on the yeast alpha-glucosidase-catalyzed hydrolysis of p-nitrophenyl and methyl-d-glucopyranoside were measured at 25 degrees C. With p-nitrophenyl-D-glucopyranoside (pNPG), the dependence of k(cat)/K(m) on pH (pD) revealed an unusually large (for glycohydrolases) solvent isotope effect on the pL-independent second-order rate constant, (DOD)(k(cat)/K(m)), of 1.9 (+/-0.3). The two pK(a)s characterizing the pH profile were increased in D(2)O. The shift in pK(a2) of 0.6 units is typical of acids of comparable acidity (pK(a)=6.5), but the increase in pK(a1) (=5.7) of 0.1 unit in going from H(2)O to D(2)O is unusually small. The initial velocities show substrate inhibition (K(is)/K(m) approximately 200) with a small solvent isotope effect on the inhibition constant [(DOD)K(is)=1.1 (+/-0.2)]. The solvent equilibrium isotope effects on the K(is) for the competitive inhibitors D-glucose and alpha-methyl D-glucoside are somewhat higher [(DOD)K(i)=1.5 (+/-0.1)]. Methyl glucoside is much less reactive than pNPG, with k(cat) 230 times lower and k(cat)/K(m) 5 x 10(4) times lower. The solvent isotope effect on k(cat) for this substrate [=1.11 (+/-0. 02)] is lower than that for pNPG [=1.67 (+/-0.07)], consistent with more extensive proton transfer in the transition state for the deglucosylation step than for the glucosylation step.  相似文献   

20.
Capsaicinol is an ingredient of hot red pepper. In this study, we developed a novel method for capsaicinol synthesis and examined capsaicinol's physiological effects on capsaicin receptor (TRPV1)-related actions. Allylic oxidation of capsaicin by palladium acetate (Pd(OAc)(2)) resulted in the formation of (+/-)-capsaicinol acetate at a 7.2% yield in a single step. The effectiveness of (+/-)-capsaicinol in TRPV1 activation (EC(50)=1.1 microM) was found to be weaker than that of capsaicin (EC(50)=0.017 microM), whereas the efficacy of (+/-)-capsaicinol reached 75% of that of capsaicin. Intravenous administration of (+/-)-capsaicinol in anesthetized rats dose-dependently enhanced adrenaline secretion from the adrenal gland. The response to a 5 mg/kg-dose of (+/-)-capsaicinol was comparable to that of a 0.05 mg/kg-dose of capsaicin. The relative pungency of capsaicinol to capsaicin was coincident with the relative effectiveness in inducing these TRPV1-related actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号