首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Armadillos, anteaters, and sloths (Order Xenarthra) comprise 1 of the 4 major clades of placental mammals. Isolated in South America from the other continental landmasses, xenarthrans diverged over a period of about 65 Myr, leaving more than 200 extinct genera and only 31 living species. The presence of both ancestral and highly derived anatomical features has made morphoanatomical analyses of the xenarthran evolutionary history difficult, and previous molecular analyses failed to resolve the relationships within armadillo subfamilies. We investigated the presence/absence patterns of retroposons from approximately 7,400 genomic loci, identifying 35 phylogenetically informative elements and an additional 39 informative rare genomic changes (RGCs). DAS-short interspersed elements (SINEs), previously described only in the Dasypus novemcinctus genome, were found in all living armadillo genera, including the previously unsampled Chlamyphorus, but were noticeably absent in sloths. The presence/absence patterns of the phylogenetically informative retroposed elements and other RGCs were then compared with data from the DNA sequences of the more than 12-kb flanking regions of these retroposons. Together, these data provide the first fully resolved genus tree of xenarthrans. Interestingly, multiple evidence supports the grouping of Chaetophractus and Zaedyus as a sister group to Euphractus within Euphractinae, an association that was not previously demonstrated. Also, flanking sequence analyses favor a close phylogenetic relationship between Cabassous and Tolypeutes within Tolypeutinae. Finally, the phylogenetic position of the subfamily Chlamyphorinae is resolved by the noncoding sequence data set as the sister group of Tolypeutinae. The data provide a stable phylogenetic framework for further evolutionary investigations of xenarthrans and important information for defining conservation priorities to save the diversity of one of the most curious groups of mammals.  相似文献   

2.
The traditional avian subfamily Furnariinae, a group of terrestrial ovenbirds typical of the Andean and Patagonian arid zones, consists of the genera Furnarius, Cinclodes, Geositta, Upucerthia, Chilia, and Eremobius. We investigated phylogenetic relationships within the Furnariinae, with particular attention to the nine species of the genus Upucerthia, using nuclear and mitochondrial DNA sequences from all genera in the subfamily. Upucerthia was found to be highly polyphyletic, its constituent species forming four non-sister clades: (1) a basal lineage consisting of two Upucerthia species, U. ruficaudus and U. andaecola, as well as the monotypic genera Eremobius and Chilia; (2) a lineage consisting of U. harterti and U. certhioides, two species behaviorally divergent from other Upucerthia species; (3) a lineage consisting of U. serrana, which is not closely related to any other Upucerthia species; and (4) a lineage, sister to Cinclodes, consisting of the four Upucerthia species U. dumetaria, U. albigula, U. validirostris, and U. jelskii. The larger Furnariinae was also found to be highly polyphyletic; the terrestrial open country ecotype characteristic of this subfamily occurs in four unrelated clades in the family Furnariidae, including a basal lineage as well as derived lineages. Although the large degree of divergence among Upucerthia clades was not previously recognized, owing to ecological, behavioral, and morphological similarities, the groupings correspond closely to relationships suggested by plumage. This is in contrast to studies of other avian genera in which plumage patterns have been shown to be extensively convergent. The generic names Upucerthia and Ochetorhynchus are available for two of the former Upucerthia clades; new generic names may be warranted for the other two.  相似文献   

3.
4.
Phylogenetic relationships, limits of species, and genera within Lycoperdaceae, were inferred by use of ITS and LSU nu-rDNA sequence data. Lycoperdaceae was confirmed as monophyletic, and Mycenastrum corium as a sister taxon to the ingroup. Four major clades were identified and received weak to moderate support and correspond with the genera Lycoperdon, Bovista, Calvatia, and Disciseda. The Lycoperdon clade includes species from Lycoperdon, Vascellum, Morganella, Handkea, Bovistella, and Calvatia. The structure within the Lycoperdon clade is unresolved and several clades are more or less unsupported, which suggests treating the supported Lycoperdon clade as the genus Lycoperdon. L. nigrescens and L. caudatum occur on single branches and their phylogenetic positions could not be resolved. The phylogenetic analyses identified 31 species of Lycoperdon, 11 species of Bovista, six species of Calvatia, and two species of Disciseda. In Lycoperdon three new species were recognized. A new species closely related to B. limosa is identified and discussed. A classification of Lycoperdaceae is proposed based on the results of the phylogenetic analyses. Morphological characters of species within and among identified clades are discussed.  相似文献   

5.
The “Vibrio fischeri species group” recently was reclassified as a new genus, Aliivibrio, comprising four species, Aliivibrio fischeri, Aliivibrio logei, Aliivibrio salmonicida, and Aliivibrio wodanis. Only limited phylogenetic analysis of strains within Aliivibrio has been carried out, however, and taxonomic ambiguity is evident within this group, especially for phenotypically unusual strains and certain strains isolated from bioluminescent symbioses. Therefore, to examine in depth the evolutionary relationships within Aliivibrio and redefine the host affiliations of symbiotic species, we examined several previously identified and newly isolated strains using phylogenetic analysis based on multiple independent loci, gapA, gyrB, pyrH, recA, rpoA, the luxABE region, and the 16S rRNA gene. The analysis resolved Aliivibrio as distinct from Vibrio, Photobacterium, and other genera of Vibrionaceae, and resolved A. fischeri, A. salmonicida, A. logei, and A. wodanis as distinct, well-supported clades. However, it also revealed that several previously reported strains are incorrectly identified and that substantial unrecognized diversity exists in this genus. Specifically, strain ATCC 33715 (Y-1) and several other strains having a yellow-shifted luminescence were not members of A. fischeri. Furthermore, no strain previously identified as A. logei grouped with the type strain (ATCC 29985T), and no bona-fide strain of A. logei was identified as a bioluminescent symbiont. Several additional strains identified previously as A. logei group instead with the type strain of A. wodanis (ATCC BAA-104T), or are members of a new clade. Two strongly supported clades were evident within A. fischeri, a phylogenetic structure that might reflect differences in the host species or differences in the ecological incidence of strains. The results of this study highlight the importance of basing taxonomic conclusions on examination of type strains.  相似文献   

6.
The snapping shrimp genus Alpheus is among the most diverse of caridean shrimps, and analyses of taxa separated by the Isthmus of Panama have been used to estimate rates of molecular evolution. Although seven morphological groups have been informally suggested, no formal phylogenetic analysis of the genus has been previously attempted. Here we infer the phylogenetic relationships within Alpheus using sequence data from two nuclear genes, glucose-6-phosphate isomerase and elongation factor-1alpha, and from the mitochondrial gene cytochrome oxidase I. Three major clades corresponding to previously noted morphological features were identified. Discrepancies between earlier informal morphological groupings and molecular analyses largely consisted of species whose morphologies were not entirely typical of the group to which they had been assigned. The traditional placements of shrimp with highly sessile lifestyles and consequently simplified morphologies were also not supported by molecular analyses. Phylogenies for Alpheus suggest that specialized ecological requirements (e.g., symbiotic associations and estuarine habitats) and modified claw morphologies have evolved independently several times. These new analyses also support the sister species status of transisthmian pairs analyzed previously, although very similar pairs were not always resolved with the more slowly evolving nuclear loci. In addition, six new cryptic species were identified in the course of these studies plus a seventh whose status remains to be determined.  相似文献   

7.
To more confidently assess phylogenetic relationships among astome ciliates, we obtained small subunit (SSU) rRNA sequences from nine species distributed in six genera and three families: Almophrya bivacuolata, Eudrilophrya complanata, Metaracoelophrya sp. 1, Metaracoelophrya sp. 2, Metaracoelophrya intermedia, Metaradiophrya sp., Njinella prolifera, Paraclausilocola constricta n. gen., n. sp., and Paraclausilocola elongata n. sp. The two new species in the proposed new clausilocolid genus Paraclausilocola n. gen. are astomes with no attachment apparatus, two files of contractile vacuoles, and an arc-like anterior suture that has differentiations of thigmotactic ciliature on the anterior ends of the left kineties of the upper surface. Phylogenetic analyses were undertaken using neighbor-joining, Bayesian inference, maximum likelihood, and maximum parsimony. The nine species of astomes formed a strongly supported clade, showing the subclass Astomatia to be monophyletic and a weakly supported sister clade to the scuticociliates. There were two strongly supported clades within the astomes. However, genera assigned to the same family were found in different clades, and genera assigned to the same order were found in both clades. Thus, astome taxa appear to be paraphyletic when morphology is used to assign species to genera.  相似文献   

8.
The Hylobatidae (gibbons) are among the most endangered primates and their evolutionary history and systematics remain largely unresolved. We have investigated the species-level phylogenetic relationships among hylobatids using 1257 bases representing all species and an expanded data set of up to 2243 bases for select species from the mitochondrial ND3-ND4 region. Sequences were obtained from 34 individuals originating from all 12 recognized extant gibbon species. These data strongly support each of the four previously recognized clades or genera of gibbons, Nomascus, Bunopithecus, Symphalangus, and Hylobates, as monophyletic groups. Among these clades, there is some support for either Bunopithecus or Nomascus as the most basal, while in all analyses Hylobates appears to be the most recently derived. Within Nomascus, Nomascus sp. cf. nasutus is the most basal, followed by N. concolor, and then a clade of N. leucogenys and N. gabriellae. Within Hylobates, H. pileatus is the most basal, while H. moloch and H. klossii clearly, and H. agilis and H. muelleri likely form two more derived monophyletic clades. The segregation of H. klossii from other Hylobates species is not supported by this study. The present data are (1) consistent with the division of Hylobatidae into four distinct clades, (2) provide the first genetic evidence for all the species relationships within Nomascus, and (3) call for a revision of the current relationships among the species within Hylobates. We propose a phylogenetic tree as a working hypothesis against which intergeneric and interspecific relationships can be tested with additional genetic, morphological, and behavioral data.  相似文献   

9.
Marin B  Palm A  Klingberg M  Melkonian M 《Protist》2003,154(1):99-145
Sequence comparisons and a revised classification of the Euglenophyceae were based on 92 new SSU rDNA sequences obtained from strains of Euglena, Astasia, Phacus, Trachelomonas, Colacium, Cryptoglena, Lepocinclis, Eutreptia, Eutreptiella and Tetreutreptia. Sequence data also provided molecular signatures for taxa from genus to class level in the SSU rRNA secondary structure, revealed by a novel approach (search for non-homoplasious synapomorphies) and used for taxonomic diagnoses. Photosynthetic euglenoids and secondary heterotrophs formed a clade, designated as Euglenophyceae (emend.) with two orders: Euglenales and Eutreptiales. The mostly marine Eutreptiales (Eutreptia, Eutreptiella; not Distigma) comprised taxa with two or four emergent flagella (the quadriflagellate Tetreutreptia was integrated within Eutreptiella). The Euglenales (freshwater genera with < or = one emergent flagellum) formed nine clades and two individual branches (single strains); however, only two clades were congruent with traditional genera: Trachelomonas (incl. Strombomonas) and Colacium. Euglena was polyphyletic and diverged into four independent clades (intermixed with Astasia, Khawkinea and Lepocinclis) and two individual branches (e.g. E. polymorpha). Phacus was also subdivided into Phacus s. str. and two combined lineages (mixed with Lepocinclis spp. or Cryptoglena). In consequence, Euglena (s. str.), Phacus and other genera were emended and one lineage (mixed Phacus/Lepocinclis-clade) was recognized as the previously neglected genus Monomorphina Mereschkowsky (1877). The sister clade of Phacus s. str. (mixed Euglena/Lepocinclis-clade) was identified as Lepocinclis Perty (emended).  相似文献   

10.
The genus Phrynosoma includes 13 species of North American lizards characterized by unique and highly derived morphologies and ecologies. Understanding interspecific relationships within this genus is essential for testing hypotheses about character evolution in this group. We analyzed mitochondrial ND4 and cytochrome b gene sequence data from all species of Phrynosoma in conjunction with a previously published dataset including 12S and 16S rRNA gene sequences and morphological characters. We used multiple phylogenetic methods and diagnostic tests for data combinability and taxonomic congruence to investigate the data in separate and combined analyses. Separate data partitions resulted in several well-supported lineages, but taxonomic congruence was lacking between topologies from separate and combined analyses. Partitioned Bremer support analyses also reveals conflict between data partitions in certain tree regions. When taxa associated with well-supported clades were removed from analyses, phylogenetic signal was lost. Combined, our results initially suggest conflict between data partitions, but further tests show the data are only appropriate for phylogenetic reconstruction of those parts of the topology that were well resolved. Nonetheless, our data analyses reveal five well-supported clades: (1) Phrynosoma ditmarsi and Phrynosoma hernandesi, (2) P. ditmarsi, P. hernandesi, and Phrynosoma douglasii, (3) P. ditmarsi, P. hernandesi, P. douglasii, and Phrynosoma orbiculare, (4) Phrynosoma mcallii and Phrynosoma platyrhinos, and (5) Phrynosoma braconnieri and Phrynosoma taurus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号