首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summer hibernation induced in ground squirrels (Citellus tridecemlineatus) by urine or plasma from hibernating bats (Myotis lucifugus or Eptesicus fuscus). Summer hibernation in the thirteen-lined ground squirrel can be induced by intravenous injection of urine or blood plasma previously isolated from winter hibernating little brown bats (M. lucifugus) or big brown bats (E. fuscus). Urine- and plasma-injected ground squirrels kept at 8 °C hibernated earlier, longer, and deeper (as indicated by core temperature and respiratory rate measurements) than control ground squirrels injected with saline. This successful cross-order induction of hibernation demonstrates that the hibernation-inducing trigger (HIT) may be present in nonrodent mammals.  相似文献   

2.
Hibernation is a strategy used by some mammals to survive a cold winter. Small hibernating mammals, such as squirrels and hamsters, use species- and tissue-specific antioxidant defenses to cope with oxidative insults during hibernation. Little is known about antioxidant responses and their regulatory mechanisms in hibernating bats. We found that the total level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the brain of each of the two distantly related hibernating bats M. ricketti and R. ferrumequinum at arousal was lower than that at torpid or active state. We also found that the levels of malondialdehyde (product of lipid peroxidation) of the two hibernating species of bats were significantly lower than those of non-hibernating bats R. leschenaultia and C. sphinx. This observation suggests that bats maintain a basal level of ROS/RNS that does no harm to the brain during hibernation. Results of Western blotting showed that hibernating bats expressed higher amounts of antioxidant proteins than non-hibernating bats and that M. ricketti bats upregulated the expression of some enzymes to overcome oxidative stresses, such as superoxide dismutase, glutathione reductase, and catalase. In contrast, R. ferrumequinum bats maintained a relatively high level of superoxide dismutase 2, glutathione reductase, and thioredoxin-2 throughout the three different states of hibernation cycles. The levels of glutathione (GSH) were higher in M. ricketti bats than in R. ferrumequinum bats and were significantly elevated in R. ferrumequinum bats after torpor. These data suggest that M. ricketti bats use mainly antioxidant enzymes and R. ferrumequinum bats rely on both enzymes and low molecular weight antioxidants (e.g., glutathione) to avoid oxidative stresses during arousal. Furthermore, Nrf2 and FOXOs play major roles in the regulation of antioxidant defenses in the brains of bats during hibernation. Our study revealed strategies used by bats against oxidative insults during hibernation.  相似文献   

3.
White-nose Syndrome (WNS) is the primary cause of over-winter mortality for little brown (Myotis lucifugus), northern (Myotis septentrionalis), and tricolored (Perimyotis subflavus) bats, and is due to cutaneous infection with the fungus Pseudogymnoascus (Geomyces) destructans (Pd). Cutaneous infection with P. destructans disrupts torpor patterns, which is thought to lead to a premature depletion of body fat reserve. Field studies were conducted at 3 WNS-affected hibernation sites to determine if big brown bats (Eptesicus fuscus) are resistant to Pd. Radio telemetry studies were conducted during 2 winters to determine the torpor patterns of 23 free-ranging E. fuscus hibernating at a site where Pd occurs. The body fat contents of free-ranging E. fuscus and M. lucifugus during hibernation at 2 different WNS-affected sites were also determined. The numbers of bats hibernating at the same site was determined during both: a) 4–7 years prior to the arrival of Pd, and, b) 2–3 years after it first appeared at this site. The torpor bouts of big brown bats hibernating at a WNS-affected site were not significantly different in length from those previously reported for this species. The mean body fat content of E. fuscus in February was nearly twice that of M. lucifugus hibernating at the same WNS-affected sites during this month. The number of M. lucifugus hibernating at one site decreased by 99.6% after P. destructans first appeared, whereas the number of E. fuscus hibernating there actually increased by 43% during the same period. None of the E. fuscus collected during this study had any visible fungal growth or lesions on their skin, whereas virtually all the M. lucifugus collected had visible fungal growth on their wings, muzzle, and ears. These findings indicate that big brown bats are resistant to WNS.  相似文献   

4.
The subtropical Formosan leaf-nosed bats, Hipposideros terasensis (Hipposideridae), show little activity during winter. It has never been determined whether in winter they exhibit hibernation and multi-day periods of low body temperature. The objectives of this study were to understand the winter activity pattern of H. terasensis and to examine whether it enters hibernation during winter. We monitored the skin temperature (T sk) of nine free-ranging H. terasensis by attaching temperature-sensitive transmitters during the winters of 2007–2008 and 2008–2009. The results showed that H. terasensis entered hibernation from late December to early March. H. terasensis, however, differs from temperate hibernating bats in several ways: (1) it is capable of hibernation at roost temperature (T r) and T sk > 20°C; (2) hibernation at high T r and T sk does not lead to a relatively high arousal frequency; and (3) adults do not increase body mass in autumn prior to hibernation. To test the hypothesis that H. terasensis feeds frequently during the hibernation period to compensate for the high energetic demands of hibernating in warm hibernacula, we recorded the number and timing of bats that emerged from and entered into a hibernaculum, which contained more than 1,000 bats. From 30 December 2007 to 29 February 2008, an average of only 8.4 bats (<1%) per night (29 nights) emerged from the hibernaculum. Adult bats lost an average of 13–14% of body mass during an approximately 70-day hibernation period. We suggest that H. terasensis might have remarkably low torpid metabolic rates during hibernation.  相似文献   

5.
6.
Because body temperature is tightly coupled to physiological function, hibernating animals entering deep torpor are typically immobile. We analysed thermal behaviour and locomotory activity of hibernating greater mouse-eared bats Myotis myotis and found two types of movement behaviour related to body temperature, i.e. movement at high fur temperature and at low fur temperatures (Tflow; <5 °C). First Tflow movements appeared at the beginning of March and often occurred during long torpor bouts. In most cases, Tflow events represented slow displacements between clusters of bats. In several cases, however, departure or arrivals from and into clusters was also recorded without any elevation in body temperature. Distance travelled, flight duration and speed of locomotion during Tflow events was lower than in high fur temperature events. Such behaviour could allow bats to save energy long-term and prolong torpor bouts. Tflow movement in torpid bats significantly changes our understanding of basic hibernation principles and we strongly recommend further studies on the subject.  相似文献   

7.
For temperate endotherms (i.e., mammals and birds) energy costs are highest during winter but food availability is lowest and many mammals depend on hibernation as a result. Hibernation is made up of energy-saving torpor bouts [periods of controlled reduction in body temperature (T b)], which are interrupted by brief periodic arousals to normothermic T b. What triggers these arousals in free-ranging hibernators is not well understood. Some temperate bats with intermittent access to flying insects during winter synchronize arousals with sunset, which suggests that, in some species, feeding opportunities influence arousal timing. We tested whether hibernating bats from a cold climate without access to food during winter also maintain a circadian rhythm for arousals or whether cues from conspecifics in the same cluster are more important. We used temperature telemetry to monitor skin temperature (T sk) of free-ranging little brown bats (Myotis lucifugus) hibernating in central Manitoba, Canada, where temperatures from 22 October to 22 March were too cold for flying insects. We found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster. Thus, in the northern part of their range where flying insects are almost never available during winter, little brown bats exhibit no circadian pattern to arousals. Warming synchronously with others could reduce the energetic costs of arousal for individuals or could reflect disturbance of torpid bats by cluster-mates.  相似文献   

8.
Hibernating animals transiently reduce renal function during their hypothermic periods (torpor), while completely restoring it during their periodical rewarming to euthermia (arousal). Moreover, structural integrity of the kidney is preserved throughout the hibernation. Nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) is a crucial vasodilatory mediator and a protective factor in the kidney. We investigated renal NOS expression in hibernating European ground squirrels after 1 day and 7 days of torpor (torpor short, TS, and torpor long, TL, respectively), at 1.5 and at 10 h of rewarming (arousal short, AS, and arousal long, AL, respectively), and in continuously euthermic animals after hibernation (EU). For that purpose, we performed NOS activity assay, immunohistochemistry and real-time PCR analysis. Immunohistochemistry revealed a decreased glomerular eNOS expression in hibernating animals (TS, TL, AS, and AL) compared to non-hibernating animals (EU, p < 0.05), whereas no difference was found in the expression of interstitial eNOS. Expression of iNOS and nNOS did not differ between all groups. The reduced glomerular eNOS was associated with a significantly lower eNOS mRNA levels and NOS activity of whole kidney during torpor and arousal (TS, TL, AS, and AL) compared to EU. In all methods used, torpid and aroused squirrels did not differ. These results demonstrate differential regulation of eNOS in glomeruli and interstitium of hibernating animals, which is unaffected during arousal. The differential regulation of eNOS may serve to reduce ultrafiltration without jeopardizing tubular structures during hibernation.  相似文献   

9.
10.
The male little brown bat is a seasonally reproductive mammal that exhibits dramatic increases in plasma concentrations of sex steroid-binding protein (SBP) in the spring, following arousal from hibernation. Adult male bats, aroused prematurely from hibernation, were found to exhibit increases in plasma SBP titers that were comparable to those observed during normal spring arousal. To evaluate the role of the thyroid gland in the control of SBP in this species, plasma SBP concentrations were determined at weekly intervals in adult male bats that were either thyroparathyroidectomized (TRX) or sham operated (SHAM) after arousal from hibernation. Plasma SBP titers in SHAM males increased markedly within the first week after arousal and by 3 wk had reached levels 20-fold higher than those measured in hibernating controls. In contrast, plasma SBP values in the TRX animals did not increase significantly following arousal but were maintained at low basal levels throughout the experiment. The postarousal rise in SBP, which was blocked by TRX, was completely restored by implantation of either L- or D-thyroxine pellets. In male bats, TRX also hindered the normal postarousal atrophy of the sex accessory glands and resulted in attenuation of the postarousal increases in plasma testosterone concentrations. These effects of TRX were also prevented by treatment with thyroxine. Thus, the thyroid appears to play a significant role in the control of the postarousal rise of SBP in the little brown bat and may be an important factor in the regulation of reproductive function in this species.  相似文献   

11.
The capability of bats to have heart rates fewer than 10 beats/min during hibernation and greater than 700 beats/min during flight surprises biologists and cardiologists. Cardioacceleration of hibernating bats is considered to be a function of their intracardiac nervous system. In the present study we investigated the morphology of the heart innervation of ten M. daubentoni and four E. serotinus bats during their natural hibernation in order to determine which intracardiac structures may be involved in cardioacceleration during their short-term (in av. 15-30 min) arousal from hibernation. The primary conclusions were as follows: (1) The innervation pattern of bats differs from many mammals in that bats have: (a) a subepicardiac nerve plexus which is vastly developed and contains a large number of intrinsic ganglia on both atria and ventricles, and (b) very small diameter axons within the unmyelinated nerve fibres, from 0.15 to 0.7 microm. (2) During hibernation an intercellular space of the sinoatrial node of M. daubentoni bats was in part filled with a cottony substance which can presumably be considered to be a temporary barrier between the conductive cardiomyocytes and nerve fibres. (3) In the hibernating bats, the acetylcholine vesicles were aggregated in the synaptic bulbs away from the presynaptic membrane. Possibly, the aggregation of the acetylcholine vesicles is capable of modifying cholinergic influences on the heart activity of hibernating bats. (4) The dense cores of catecholamine synaptic vesicles within, adrenergic axon terminals were seldomly observed in hibernating bats. Therefore, catecholamines probably do not play a crucial role in the cardioacceleration of hibernating bats.  相似文献   

12.
Summary Fiber composition, and glycolytic and oxidative capacities of the pectoralis, gastrocnemius, and cardiac muscles from active and hibernating little brown bats (Myotis lucifugus) was studied. The data were used to test two hypotheses: First, since hibernating bats maintain the capability of flight and make use of leg muscles to maintain a roosting position all winter, the fiber composition of the pectoralis and gastrocnemius muscles should not change with season. Second, we tested the hypothesis of Ianuzzo et al. (in press), who propose that the oxidative potential of mammalian cardiac muscle should increase with increasing heart rate while glycolytic potential should not. Our results indicate that the fiber composition of the pectoralis muscle was uniformly fast-twitch oxidative (FO)_ regardless of the time of year, as predicted. However, the gastrocnemius muscle exhibited a change in FO composition from 83% in active to 61% in hibernating animals. Contrary to the variable change in histochemical properties with metabolic state, a trend of reduced maximal oxidative (CS) and glycolytic (PFK) potential during hibernation in both flight and leg muscles was apparent. The oxidative potential of flight and leg muscles decreased by 15.2% and 56.5%, respectively, while the glycolytic potential of the same muscles decreased by 23.5% and 60.5%, respectively. As predicted, the glycolytic potential of cardiac muscle remained constant between active and hibernating bats, although there was a significant decrease (22.0%) in oxidative potential during hibernation.Abbreviations FO fast-twitch oxidative - FG fast-twitch glycolytic - SO slow-twitch oxidative - Vmax maximal enzyme activity - PFK phosphofructokinase - CS citrate synthase  相似文献   

13.
Hibernation is an energy-saving strategy which is widely adopted by heterothermic mammals to survive in the harsh environment. The greater horseshoe bat (Rhinolophus ferrumequinum) can hibernate for a long period in the hibernation season. However, the global gene expression changes between hibernation and non-hibernation season in the greater horseshoe bat remain largely unknown. We herein reported a comprehensive survey of differential gene expression in the brain between winter hibernating and summer active greater horseshoe bats using next-generation sequencing technology. A total of 90,314,174 reads were generated and we identified 1,573 differentially expressed genes between active and torpid states. Interestingly, we found that differentially expressed genes are over-represented in some GO categories (such as metabolic suppression, cellular stress responses and oxidative stress), which suggests neuroprotective strategies might play an important role in hibernation control mechanisms. Our results determined to what extent the brain tissue of the greater horseshoe bats differ in gene expression between summer active and winter hibernating states and provided comprehensive insights into the adaptive mechanisms of bat hibernation.  相似文献   

14.
The blood coagulation system of Spermophilus franklini was evaluated from normothermic, hibernating, and aroused individuals. Clotting time, thrombin time, prothrombin time, and partial thromboplastin time were measured to test the state of coagulability. The concentrations of the formed elements and the titers of five plasma factors were also determined.During hibernation, clotting time significantly increased above normothermic levels. Arousal resulted in clotting time returning toward normothermic values. Both thrombin time and partial thromboplastin time significantly increased above normothermic levels in blood from hibernators. The two tests exhibited normothermic levels in arousing individuals. Prothrombin time did not increase in blood from hibernating animals.Erythrocytes, leukocytes, and platelets were found to be significantly reduced in number in hibernating animals. Leukocyte and platelet numbers returned to normothermic levels during arousal.Factor VII, Factor X, prothrombin, and heparin concentrations did not significantly change from normothermic levels in hibernating individuals. Factor V, however, displayed a 45% decrease in concentration in hibernating individuals, with arousal resulting in near-normothermic levels. Aroused individuals displayed a doubling of prothrombin concentrations relative to normothermic individuals.  相似文献   

15.
16.
Some mammals hibernate in response to harsh environments. Although hibernating mammals may metabolize proteins, the nitrogen metabolic pathways commonly activated during hibernation are not fully characterized. In contrast to the hypothesis of amino acid preservation, we found evidence of amino acid metabolism as three of five key enzymes, including phenylalanine hydroxylase (PAH), homogentisate 1,2-dioxygenase (HGD), fumarylacetoacetase (FAH), involved in phenylalanine and tyrosine catabolism were co-upregulated during hibernation in two distantly related species of bats, Myotis ricketti and Rhinolophus ferrumequinum. In addition, the levels of phenylalanine in the livers of these bats were significantly decreased during hibernation. Because phenylalanine and tyrosine are both glucogenic and ketogenic, these results indicate the role of this catabolic pathway in energy supply. Since any deficiency in the catabolism of these two amino acids can cause accumulations of toxic metabolites, these results also suggest the detoxification role of these enzymes during hibernation. A higher selective constraint on PAH, HPD, and HGD in hibernators than in non-hibernators was observed, and hibernators had more conserved amino acid residues in each of these enzymes than non-hibernators. These conserved amino acid residues are mostly located in positions critical for the structure and activity of the enzymes. Taken together, results of this work provide novel insights in nitrogen metabolism and removal of harmful metabolites during bat hibernation.  相似文献   

17.
18.
Summary The localization of the somatostatin system in the brains of Richardson's ground squirrels (Spermophilus richardsonii) and European hedgehogs (Erinaceus europaeus) was described by use of immunocytochemical methods. In addition, (i) chemically differing types of somatostatin and (ii) different activity phases of the somatostatin system during the hibernation cycle were investigated in the ground squirrel by means of high pressure liquid chromatography (HPLC) and radioimmunoassay (RIA).In both species, the hypothalamic component of the somatostatin system (periventricular nuclei, fiber projections to the median eminence) is more prominent than the widespread extrahypothalamic representation of the system displaying mainly scattered perikarya and nerve fibers. The reactivity pattern of the somatostatin system varied among hibernating, aroused, and non-hibernating animals; moreover, the interspecific differences were pronounced. The activity of the hypothalamic somatostatin system in the hibernating ground squirrel appeared to be suppressed when compared to non-hibernating controls, whereas in the hibernating hedgehog this system showed signs of increased activity in comparison to non-hibernating controls. In contrast, in the present material the extrahypothalamic components of the somatostatin system did not exhibit significant changes in their activity.  相似文献   

19.
Seasonal changes of the isoform composition of myosin heavy chains in skeletal muscles (m. triceps, m. longissimus dorsi, m. soleus, m. gastrocnemius, m. vastus lateralis) of hibernating ground squirrels Spermophilus undulatus were studied. Functional properties of myosin (the actin-activated ATPase activity and its Ca2+-sensitivity in vitro) were also examined. It was observed that the content of slow myosin heavy chain I isoform increased and the content of fast IIx/d isoform decreased in muscles of torpid ground squirrels and animals which are active in autumn and winter. In muscles of these animals the content of N2A-titin isoform decreased although the relative content of NT-titin isoform, observed in striated muscles of mammals in our previous experimental works, increased. Actin-activated ATPase activity and Ca2+-sensitivity of myosin isolated from skeletal muscles of torpid and interbout ground squirrels were found to reduce. The changes observed are discussed in the context of adaptation of skeletal muscles of ground squirrels to hibernation conditions.  相似文献   

20.
Populations of hibernating bats in the northeastern USA are being decimated by white-nose syndrome (WNS). Although the ultimate cause of death is unknown, one possibility is the premature depletion of fat reserves. The immune system is suppressed during hibernation. Although an elevated body temperature (T b) may facilitate an immune response, it also accelerates the depletion of fat stores. We sought to determine if little brown bats Myotis lucifugus Le Conte 1831 hibernating in WNS-affected hibernacula have an elevated T b and reduced fat stores, relative to WNS-unaffected Indiana bats Myotis sodalis Miller and Allen 1928 from Indiana. We found that WNS-affected M. lucifugus maintain a slightly, but significantly, higher skin temperature (T skin), relative to surrounding rock temperature, than do M. sodalis from Indiana. We also report that WNS-affected M. lucifugus weigh significantly less than M. lucifugus from a hibernaculum outside of the WNS region. However, the difference in T skin is minimal and we argue that the elevated T b is unlikely to explain the emaciation documented in WNS-affected bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号