首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

2.
This report describes the delivery of plasmid DNA containing either the β-glucuronidase (GUS) or the green fluorescent protein (GFP) reporter gene into intact plant cells of bamboo callus, lilium scales, and Nicotiana benthamiana suspension culture cells. By first plasmolyzing the tissues or cells with 0.4 m sucrose in the presence of plasmid DNA, electroporation effectively delivers plasmid DNA into the intact plant cells. Transient expression of the GUS gene, as revealed by histochemical assays, showed the presence of blue-staining areas in the electroporated tissues. A short exposure of cells to 2% DMSO (dimethyl sulfoxide) prior to plasmolysis elevated the level of transient GUS activity. When plasmid DNA containing a synthetic GFP gene was used, a strong green fluorescence was observed in N. benthamiana suspension culture cells that were subjected to plasmolysis and electroporation. These results suggest that plasmolysis brings the plasmid DNA into the void space that is in close vicinity to the plasmalemma, allowing electroporation to efficiently deliver the plasmid DNA into intact plant cells. Received: 15 June 1998 / Revision received: 18 August 1998 / Accepted: 28 August 1998  相似文献   

3.
A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize.  相似文献   

4.
Wan Y  Lemaux PG 《Plant physiology》1994,104(1):37-48
A rapid, efficient, and reproducible system to generate large numbers of independently transformed, self-fertile, transgenic barley (Hordeum vulgare L.) plants is described. Immature zygotic embryos, young callus, and microspore-derived embryos were bombarded with a plasmid containing bar and uidA either alone or in combination with another plasmid containing a barley yellow dwarf virus coat protein (BYDVcp) gene. A total of 91 independent bialaphos-resistant callus lines expressed functional phosphinothricin acetyltransferase, the product of bar. Integration of bar was confirmed by DNA hybridization in the 67 lines analyzed. Co-transformation frequencies of 84 and 85% were determined for the two linked genes (bar and uidA) and for two unlinked genes (bar and the BYDVcp gene), respectively. More than 500 green, fertile, transgenic plants were regenerated from 36 transformed callus lines on bialaphos-containing medium; albino plants only were regenerated from 41 lines. T0 plants in 25 lines (three plants per line) were analyzed by DNA hybridization, and all contained bar. Most contained the same integration patterns for the introduced genes (bar, uidA, and the BYDVcp gene) as their parental callus lines. Transmission of the genes to T1 progeny was confirmed in the five families analyzed by DNA hybridization. A germination test of immature T1 embryos on bialaphos-containing medium was useful for selecting individuals that were actively expressing bar, although this was not a good indicator of the presence or absence of bar. Expression of bar in some progeny plants was indicated by resistance to the herbicide Basta. The T1 plants were in soil approximately 7 months after bombardment of the immature embryo.  相似文献   

5.
Stably transformed callus of a hybrid sugarcane cultivar (Saccharum species hybrid, CP72-1210) was achieved following high velocity microprojectile bombardment of suspension culture cells, and electroporation of protoplasts. A three-day old cell suspension culture (SC88) was bombarded with gold particles coated with pBARGUS plasmid DNA containing the ß-glucuronidase (GUS) reporter gene and the bar selectable gene that confers resistance to the herbicide basta. The pBARGUS plasmid was also electroporated into the protoplasts of another cell line (SCPP). Colonies resistant to basta were recovered from both sources. Stable integration of the bar gene in the resistant cell lines was confirmed by Southern analysis. In addition, phosphinothricin acetyltransf erase (PAT) activity was also demonstrated in the transformed cell lines.Abbreviations GUS ß-glucuronidase - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP benzylaminopurine - PMSF phenylmethylsulfonyl fluoride - MES 2[N-Morpholino]ethanesulfonic acid - HEPES [N-2-hydroxyethyl] piperazine-N-[2-ethane sulfonic acid] - PAT Phosphinothricin acetyltransferase - CTAB cetyltrimethylammonium bromide  相似文献   

6.
Summary Direct gene transfer into peanut intact embryonic leaflets was performed through electroporation. In transient β-glucuronidase expression assays, maximal expression was obtained by using pulses of 625 V cm−1 in EPRm (modified electroporation) buffer supplemented with 75 μM NaCl. Kanamycin-resistant plants were obtained, and the presence of the nptII gene was demonstrated by PCR analysis. The positive effect of electroporation on the efficiency of in vitro regeneration was demonstrated. Explants submitted to field strengths between 500 and 625 V cm−1 displayed a significantly increased number of shoots and originated faster growing calluses relative to control explants. Whereas in control explants callus formation occurred only at the petiolule, electroporated leaflets developed additional organogenic calluses on the foliar lamina. These authors have contributed equally to this work.  相似文献   

7.
农杆菌介导籼稻优良恢复系bar基因的遗传转化研究   总被引:2,自引:0,他引:2  
应用农杆菌介导转化体系,成功地将含有CaMv35s启动子启动的bar基因导入籼稻幼胚来源的愈伤组织,获得籼稻优良恢复系T461、R402和752三个品种(系)共47个抗除草剂Basta的转基因株系,Southem分析结果表明,转基因植株基因组中检测到bar基因的整合,转基因植株自交后代Basta除草剂抗性鉴定表现出分离,且大多数为1-2个整合位点的孟德尔方式遗传。结果表明,根癌农杆菌介导法可以有效且可靠地转化籼稻。  相似文献   

8.
Abstract

A protocol of protoplast isolation from Egyptian varieties of pea and bean is reported. Protoplast cultures were established from apical shoots of pea (Pisum sativum) and suspension cultures of bean (Phaseolus vulgaris). To isolate protoplasts of pea, apical shoot tissues were digested for 10 h using enzyme solution containing 1% pectinase, 0.5% cellulase, 0.5% hemicellulase, 10% mannitol and 0.1% CaCl2-2H2O. For protoplast isolation from suspension culture of bean, collected cells were incubated for 6 h in digestion solution containing 0.5% pectinase, 0.25% of each of cellulase and hemicellulase, 10% mannitol and 0.1% CaCl2-2H2O. Purified protoplasts were cultured in liquid culture medium. Microcalli were obtained after 30 days of culture. Calli colonies with a diameter of about 5 mm were developed after one month of culturing on solid B5 medium containing 2% sucrose, 2 g/l casein hydrolysate, 0.7% agar and supplemented with either 1 mg/l of each 2,4-D and kin in case of pea or 2 mg/l 2,4-D+0.5 mg/l kin in case of bean. Protoplast derived callus of pea was successfully differentiated into shoot and root, and highest frequency of shoot organogenesis was recorded on medium containing 0.5 mg/l NAA+2 mg/l BA. Protoplast derived callus of bean, on the other hand, gave rise to a high frequency of root formation when cultured on medium containing 1 mg/l NAA, but attempts to regenerate shoots from this callus was unsuccessfull.  相似文献   

9.
We have established an efficient particle-bombardment transformation protocol for the diploid non-apomictic genotype of the warm season forage crop Paspalum notatum (bahiagrass). A vector containing a herbicide resistance gene (bar) together with the GUS reporter gene was used in transformation experiments. The bar gene confers resistance to the herbicide bialaphos. An improved culture system, highly regenerative callus, dense in compact polyembryogenic clusters, was produced on medium with a high CuSO4 content at elevated temperature. Target tissue (360 calli) produced under these conditions yielded 52 rooted plants on herbicide-containing medium, and 22 of these plants were PCR-positive. DNA gel blot analysis revealed a copy number of 1-5 for the GUS gene in different independent transformants. There was no correlation between copy number and GUS activity. While conventional cultures yielded exclusively albino plants on herbicide-containing medium, improved culture conditions for the target tissue resulted in the recovery of 100% green transgenic plants. All green herbicide-resistant regenerants were morphological normal and fertile.  相似文献   

10.
Summary Techniques for transforming intact tissues of cereals were evaluated for their efficacy in transforming immature embryos and Type II callus of maize (Zea mays L.). The techniques used were particle bombardment, tissue electroporation, tissue electrophoresis, and silicon carbide fibers. Each method was assessed in terms of transient β-glucuronidase (GUS) expression. High levels of GUS expression were observed in A188 Type II callus using both tissue electroporation and particle bombardment, with means of 417.8 and 954.5 blue expression units (beu) per g fresh weight (FW) callus, respectively. Only particle bombardment resulted in high transient gene expression in immature embryos, with a mean transformation frequency of 34.8 b.e.u. per embryo. Very low levels of GUS expression were achieved with silicon carbide-mediated gene transfer, even when employing tissues used in the original publication (Black Mexican Sweet suspension cells). GUS expression was not obtained following tissue electrophoretic gene delivery.  相似文献   

11.
Fertile, transgenic maize plants were generated by electroporation of suspension culture cells that were treated with a pectin-degrading enzyme. Electroporation of cells from two different suspension cultures, one derived from A188 X B73 and one derived from a B73-related inbred, with a plasmid containing the bar gene, resulted in high-frequency recovery of stably transformed callus lines. Plants were regenerated from thirteen transformed callus lines and transmission of bar to progeny was demonstrated.  相似文献   

12.
利用电激法转化小麦幼胚的研究   总被引:13,自引:0,他引:13  
利用我们实验自制的脉冲放电式电激仪HPES-3,我们将含bar基因即PAT酶 pDM302质粒DNA导入了一个春小品种“T2003”的幼胚中。经过在含有ppt的选择培养基上筛选,得到了抗ppt的愈伤组织和再生小苗。  相似文献   

13.
Transgenic plants of Lupinus angustifolius L. (cvs. Unicrop and Merrit) were routinely generated using Agrobacterium-mediated gene transfer to shoot apices. The bar gene for resistance to phosphinothricin (PPT, the active ingredient of the herbicide Basta) was used as the selectable marker. After co-cultivation, the shoot apex explants were transferred onto a PPT-free regeneration medium and their tops were thoroughly wetted with PPT solution (2 mg/ml). The multiple axillary shoots developing from the shoot apices were excised onto a medium containing 20 mg/l PPT. The surviving shoots were transferred every second week onto fresh medium containing 20 mg/l PPT. At each transfer, the number of surviving shoots decreased, until it stabilized. Indeed, some of these chimeric shoots surviving the PPT selection, eventually produced new green healthier axillary shoots which could be transferred to soil. This whole process took from 5 to 9 months after co-cultivation. Average transformation frequencies of 2.8% for cv. Unicrop and of 0.4% for the commercial cultivar Merrit were achieved. Molecular analysis of T0, T1, and T2 generations demonstrated stable integration of the foreign gene into the plant genome and expression of the integrated gene. Transformed plants of the T1 and T2 generations were resistant in glasshouse trials where the herbicide Basta (0.1 mg/ml) was sprayed onto whole plants. These results demonstrate that Agrobacterium-mediated gene transfer to preorganised meristematic tissue combined with axillary regeneration can form the basis of a routine transformation system for legume crop species which are difficult to regenerate from other explants.  相似文献   

14.
《Genetika》2006,42(4):507-518
The parameters for delivery of expression cassettes to cells of wheat morphogenic callus induced from immature embryos were optimized. Three systems (gradation, delayed, and regeneration) for in vitro selection of transgenic wheat tissue using the bar gene, providing resistance to the herbicide phosphinothricin (PPT), were compared. The efficiency of gene delivery to the cells competent for plant regeneration was assessed by comparing the number of spots transiently expressing uidA gene (encoding beta-glucuronidase) per unit surface of the morphogenic calluses treated under various conditions. The selection systems in question were evaluated by comparing the transformation efficiency frequencies. The optimal parameters for wheat biolistic transformation using a particle inflow gun were determined, namely, the distance between the particle source and the target tissue (12 cm) and helium pressure during the shot (6 atm). The optimal time of callus tissue development on the medium inducing callus formation was determined (10-14 days). Comparison of the three selection variants demonstrated that the regeneration system was the most efficient for producing true transgenic plants of common wheat.  相似文献   

15.
Summary Transgenic Phaseolus vulgaris or common bean has been produced using electric-discharge particle acceleration. The method uses particle acceleration to introduce DNA into bean seed meristems. Multiple shoots are then generated and screened to recover transgenic plants at a rate of 0.03% germline transformed plants/shoot. We have been able to recover transgenic plants using both GUS and herbicide screening to introduce the gus, bar, and bean golden mosaic virus coat protein genes into the navy bean cultivar, Seafarer. The transgenic plants have been characterized over 5 generations of self-fertilization with no loss of introduced genes or expression. In addition, several families have been crossed with non-transgenic parents and these plants also show expected inheritance patterns. The introduced bar gene has been shown to confer strong resistance in transgenic beans to basta herbicide application in the greenhouse.Abbreviations BGMV bean golden mosaic virus - PAT phosphinothricin acetyltransferase  相似文献   

16.
Summary Transient expression of the β-glucuronidase (GUS) gene has been studied in leaf-derived embryogenic callus of sweetpotatoIpomoea batatas L. (Lam.) by electroporation. The influence of several factors including electric field strength, buffer composition, time course of transientGUS gene expression, DNA concentration, enzyme, and polyethylene glycol (PEG) treatment was examined onGUS gene expression (number of blue spots). MaximumGUS gene expression (an average of 90 blue spots/fifty mg fresh weight callus tissue) was observed after 48 h when callus pieces were preincubated with electroporation (EPR) buffer for 1 h, followed by electroporation with a single electric pulse of 500 V/cm discharged from a 960-μF capacitor in the presence of 20 μg DNA/ml and 8.3 μl NaCl (3M). Changing the electroporation buffer conductivity (by varying the buffer composition with low-high salt concentrations), had only slight effect on the number of blue spots. Similarly, the time course study ofGUS gene expression revealed that GUS activity could be detected 12 h after electroporation with a maximum activity after 72 h (112 blue spots). Increasing the amount of DNA from 5 to 50 μg/ml in the EPR buffer had a slight effect on the expression frequency (from 20–110 blue spots, and 112 blue spots with 20 μg/ml). The number of blue spots was increased by enzymatic wounding of callus pieces for 10 min and by addition of 200 μl PEG 4000 (15%) before electroporation. These results suggest that intact cell electroporation can be used for producing transgenic sweetpotato tissue.  相似文献   

17.
Bialaphos selection of stable transformants from maize cell culture   总被引:15,自引:0,他引:15  
Summary Stable transformed Black Mexican Sweet (BMS) maize callus was recovered from suspension culture cells bombarded with plasmid DNA that conferred resistance to the herbicide bialaphos. Suspension culture cells were bombarded with a mixture of two plasmids. One plasmid contained a selectable marker gene, bar, which encoded phosphinothricin acetyl transferase (PAT), and the other plasmid encoded a screenable marker for -glucuronidase (GUS). Bombarded cells were selected on medium containing the herbicide bialaphos, which is cleaved in plant cells to yield phosphinothricin (PPT), an inhibitor of glutamine synthetase. The bialaphos-resistant callus contained the bar gene and expressed PAT as assayed by PPT inactivation. Transformants that expressed high levels of PAT grew more rapidly on increasing concentrations of bialaphos than transformants expressing low levels of PAT. Fifty percent of the bialaphos-resistant transformants tested (8 of 16) expressed the nonselected gene encoding GUS.  相似文献   

18.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

19.
A procedure for culturing protoplasts from slowly growing embryogenic calli of wheat was developed. The procedure was dependent on the ability to isolate large numbers of culturable protoplasts from slowly growing embryogenic callus. Approximately 68% of the isolated protoplasts divided, and 22% formed colonies; of the latter, 67% continued to proliferate. Plating efficiency was reduced when protoplasts were transformed by polythylene glycol, electroporation, and/or Agrobacterium. Intact cells were also directly transformed by electroporation. Direct electroporation of the Agrobacterium binary vector into intact cells resulted in a significant increase of GUS activity over the control.  相似文献   

20.
Summary Kanamycin resistant callus was produced from leaf disc or hypocotyl expiants of green bean (Phaseolus vulgaris L.) when cultured on a defined medium containing 50 mg/l kanamycin after 4 days of co-cultivation with Agrobacterium tumefaciens strain EHA101 containing the binary vector pKYLX71GUS. The presence of neomycin phosphotransferase II (NPT-II) in crude cellular extracts from the kanamycin resistant callus was confirmed by ELISA. The expression of the ß-glucuronidase (GUS) reporter gene was confirmed by histochemical and fluorimetric analyses. Southern blot border analysis confirmed the integration of the foreign DNA. In addition to the evidence obtained from Southern analysis, the absence of Agrobacterium in the transformed callus cultures was confirmed by microscopic observation and through test cultures. Using the above protocol, bean callus cultures were also transformed with a bean chalcone synthase promoter-GUS fusion. These cultures, when treated with the elicitor glutathione, showed higher levels of GUS expression than the unelicited callus clumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号