首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly precise and sensitive method for the estimation of indapamide in human whole blood using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) is described. The method developed is validated in human whole-blood matrix, with a sensitivity of 0.5 ng/ml as lower limit of quantification. The procedure for the extraction of indapamide and glimepiride as internal standard (IS) involves haemolysis and deprotienation of whole blood using ZnSO(4) followed by liquid-liquid extraction using ethyl acetate. The sample extracts after drying were reconstituted and analysed by LC-MS/MS, equipped with turbo ion spray (TIS) source, operating in the positive ion and selective reaction monitoring (SRM) acquisition mode to quantify indapamide in human whole blood. The mean recovery for indapamide was 82.40 and 93.23% for IS. The total run time was 2.5 min to monitor both indapamide and the IS. The response of the LC-MS/MS method for indapamide was linear over the range of 0.5-80.0 ng/ml with correlation coefficient, r>or=0.9991. The coefficient of variance (% CV) at 0.5 ng/ml was 4.02% and the accuracy was well within the accepted limit of +/-20% at 0.5 ng/ml and +/-15% at all other concentrations in the linear range. This method is fully validated for the accuracy, precision and stability studies and also applied to subject-sample analysis of bioequivalence study for 1.5mg sustained-release (SR) formulations.  相似文献   

2.
The use of enzymatic digests of the peptide HIV-1 fusion inhibitor enfuvirtide as a tool for the absolute quantification of this polypeptide (MW 4492 Da) in human plasma by LC-MS/MS has been evaluated. Two different methods applying digestion of enfuvirtide with chymotrypsin after solid phase extraction (SPE) of the plasma samples have therefore been developed and validated. One method used a stable isotopically labeled analog of the complete peptide (d60-enfuvirtide) as internal standard (IS) and could use as much as four different chymotryptic fragments for the quantification of enfuvirtide in a range of 100-10,000 ng/ml. Intra- and inter-assay precisions and deviations from the nominal concentrations varied for the different fragments, but were below 9% when the four results were averaged. The other method used a stable isotopically labeled chymotryptic fragment of the peptide (d10-ASLW) as IS. Although this IS does not correct for variations in digestion recovery, it allows the selective quantification of enfuvirtide (100-10,000 ng/ml), besides the quantification of the sum of enfuvirtide and its de-amidated metabolite M-20 (120-12,000 ng/ml). Both methods were suitable for the absolute quantification of enfuvirtide and M-20 in plasma, but proper selection of the fragment(s) used for the quantification appeared crucial when the deuterated fragment was used as IS.  相似文献   

3.
A rapid method for the quantification of amiodarone and desethylamiodarone in animal plasma using high-performance liquid chromatography combined with UV detection (HPLC-UV) is presented. The sample preparation includes a simple deproteinisation step with acetonitrile. In addition, a sensitive method for the quantification of amiodarone and desethylamiodarone in horse plasma and urine using high-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is described. The sample preparation includes a solid-phase extraction (SPE) with a SCX column. Tamoxifen is used as an internal standard for both chromatographic methods. Chromatographic separation is achieved on an ODS Hypersil column using isocratic elution with 0.01% diethylamine and acetonitrile as mobile phase for the HPLC-UV method and with 0.1% formic acid and acetonitrile as mobile phase for the LC-MS/MS method. For the HPLC-UV method, good linearity was observed in the range 0-5 microg ml(-1), and in the range 0-1 microg ml(-1) for the LC-MS/MS method. The limit of quantification (LOQ) was set at 50 and 5 ng ml(-1) for the HPLC-UV method and the LC-MS/MS method, respectively. For the UV method, the limit of detection (LOD) was 15 and 10 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs of the LC-MS/MS method in plasma were much lower, i.e. 0.10 and 0.04 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs obtained for the urine samples were 0.16 and 0.09 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The methods were shown to be of use in horses. The rapid HPLC-UV method was used for therapeutic drug monitoring after amiodarone treatment, while the LC-MS/MS method showed its applicability for single dose pharmacokinetic studies.  相似文献   

4.
A simple method using a one-step liquid-liquid extraction (LLE) with methyl-t-butyl ether (MTBE) followed by high-performance liquid chromatography (HPLC) with negative-ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of cilnidipine in human plasma using benidipine as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 491.1>121.8 for cilnidipine and m/z 504.2>122.1 for IS, respectively. Analytes were chromatographed on a CN column by isocratic elution using 10mM ammonium acetate buffer-methanol (30:70, v/v; adjusted with acetic acid to pH 5.0). Results were linear (r2=0.99998) over the studied range (0.1-20ng/ml) with a total LC-MS/MS analysis time per run of 3min. The developed method was validated and successfully applied to a cilnidipine bioequivalence study in 24 healthy male volunteers.  相似文献   

5.
Glycyrrhizin (GLY) which has been widely used in traditional Chinese medicinal preparation possesses various pharmacological effects. In order to investigate the pharmacokinetic behavior of GLY in human after oral administration of GLY or licorice root, a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of GLY and its major metabolite glycyrrhetic acid (GA) in human plasma. The method involved a solid phase extraction of GLY, GA, and alpha-hederin, the internal standard (IS), from plasma with Waters Oasis MCX solid phase extraction (SPE) cartridges (30 mg) and a detection using a Micromass Quattro LC liquid chromatography/tandem mass spectrometry system with electrospray ionization source in positive ion mode. Separation of the analytes was achieved within 5min on a SepaxHP CN analytical column with a mobile phase of acetonitrile:water (50:50, v:v) containing 0.1% formic acid and 5mM ammonium acetate. Multiple reaction monitoring (MRM) was utilized for the detection monitoring 823--> 453 for GLY, 471--> 177 for GA and 752--> 456 for IS. The LC-MS/MS method was validated for specificity, sensitivity, accuracy, precision, and calibration function. The assay had a calibration range from 10 to 10,000 ng/mL and a lower limit of quantification of 10 ng/mL for both GLY and GA when 0.2 mL plasma was used for extraction. The percent coefficient of variation for accuracy and precision (inter-run and intra-run) for this method was less than 11.0% with a %Nominal ranging from 87.6 to 106.4% for GLY and 93.7 to 107.8% for GA. Stability of the analytes over sample processing (freeze/thaw, bench-top and long-term storage) and in the extracted samples was also tested and established.  相似文献   

6.
A specific LC-MS/MS assay was developed for the automated determination of talinolol in human plasma, using on-line solid phase extraction system (prospekt 2) combined with atmospheric pressure chemical ionization (APCI) tandem mass spectrometry. The method involved simple precipitation of plasma proteins with perchloric acid (contained propranolol) as the internal standard (IS) and injection of the supernatant onto a C8 End Capped (10 mmx2 mm) cartridge without any evaporation step. Using the back-flush mode, the analytes were transferred onto an analytical column (XTerra C18, 50 mmx4.6 mm) for chromatographic separation and mass spectrometry detection. One of the particularities of the assay is that the SPE cartridge is used as a column switching device and not as an SPE cartridge. Therefore, the same SPE cartridge could be used more than 28 times, significantly reducing the analysis cost. APCI ionization was selected to overcome any potential matrix suppression effects because the analyte and IS co-eluted. The mean precision and accuracy in the concentration range 2.5-200 ng/mL was found to be 103% and 7.4%, respectively. The data was assessed from QC samples during the validation phase of the assay. The lower limit of quantification was 2.5 ng/mL, using a 250 microL plasma aliquot. The LC-MS/MS method provided the requisite selectivity, sensitivity, robustness accuracy and precision to assess pharmacokinetics of the compound in several hundred human plasma samples.  相似文献   

7.
Glabridin is a major flavonoid included specifically in licorice (Glycyrrhiza glabra L.), and has various physiological activities including antioxidant and anti-inflammatory effects. We have developed and validated an analytical method for determination of glabridin in human plasma by solid-phase extraction (SPE) and LC-MS/MS. Glabridin was extracted from plasma by SPE using a C8 cartridge and analyzed by LC-MS/MS using mefenamic acid as an internal standard (IS). The analyte were separated by a C18 column on LC, and monitored with a fragment ion of m/z 201 formed from a molecular ion of m/z 323 for glabridin and that of m/z 196 from m/z 240 for IS during negative ion mode with tandem MS detection. The lower limit of quantitation (LLOQ) of glabridin was 0.1 ng/mL in plasma, corresponding to 1.25 pg injected on-column. The calibration curves exhibited excellent linearity (r>0.997) between 0.1 and 50 ng/mL. Precision and accuracy were <17 and <+/-7% at LLOQ, and <11 and <+/-5% at other concentrations. Glabridin was recovered >90%, and was stable when kept at 10 degrees C for 72 h, at -20 degrees C until 12 weeks, and after three freeze-thaw cycles. This is the first report on determination of glabridin in body fluids by the selective, sensitive, and reproducible method.  相似文献   

8.
A highly sensitive and specific LC-MS/MS method has been developed for simultaneous estimation of itraconazole (ITZ) and hydroxyitraconazole (OH-ITZ) with 500 microL of human plasma using fluconazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Solid phase extraction process was used to extract ITZ, OH-ITZ and IS from human plasma. The total run time was 3.0 min and the elution of ITZ, OH-ITZ and IS occurred at 2.08 min, 1.85 min and 1.29 min, respectively; this was achieved with a mobile phase consisting of 0.2% (v/v) ammonia solution:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a HyPurity C(18) (50 mm x 4.6 mm, 5 microm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.50 ng/mL for both ITZ and OH-ITZ. A linear response function was established for the range of concentrations 0.5-263 ng/mL (r>0.998) for both ITZ and OH-ITZ. The intra- and inter-day precision values for ITZ and OH-ITZ met the acceptance as per FDA guidelines. ITZ and OH-ITZ were stable in the battery of stability studies, viz., bench-top, auto-sampler, dry extract and freeze/thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

9.
A specific liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed and validated for the determination of lercanidipine, a dihydropyridine calcium channel blocker, in human plasma. Lercanidipine R-D3 was used as internal standard (IS). The drug was extracted from plasma using liquid-liquid extraction technique utilizing hexane: ethyl acetate as extraction solvent. The samples were analyzed using a prepacked Thermo Hypersil C(8) column and a mobile phase composed of a mixture of aqueous acetic acid and triethylamine in methanol. An ion trap mass spectrometer equipped with electrospray ionization (ESI) source operating in the positive ion mode was used to develop and validate the method. The method was proved to be sensitive and specific by testing six different human plasma batches. Linearity was established for the concentration ranges of 0.1-16 ng/ml with a regression factor of 0.9996. The lower limit of quantitation was identifiable and reproducible at 0.1 ng/ml with a precision of 7.2%.  相似文献   

10.
A LC-MS/MS method was validated for the determination of BA011FZ041, a styrylquinoline derivative. After addition of BA011FZ055 as internal standard (IS), the method involved solid phase extraction (SPE), LC separation with an ether-phenyl column and quantification by MS/MS after positive ESI. The calibration curve, ranging from 1 to 500 ng/mL was fitted to a 1/x-weighted quadratic regression model. Lower limit of quantification (LLOQ) was 1 ng/mL using 100 microL of plasma. Intra- and inter-assay precision and accuracy values were within the regulatory limits. The method was successfully applied to the determination of BA011FZ041 in rat plasma and PBMCs after i.v. dosing.  相似文献   

11.
A simple, sensitive and rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to quantify griseofulvin in human plasma using propranolol hydrochloride as internal standard (IS). Samples were prepared using solid phase extraction and analysed without drying and reconstitution. The analytes were chromatographed on Hypersil, hypurity C18 reverse phase column under isocratic conditions using 0.05% formic acid in water:acetonitrile (30:70, v/v) as the mobile phase. Total chromatographic run time was 3.0 min. Quantitation was done on a triple quadrupole mass analyzer API-3000, equipped with turbo ion spray interface and operating in multiple reaction monitoring (MRM) mode to detect parent-->product ion transition for analyte and IS. The method was validated for sensitivity, matrix effect, accuracy and precision, linearity, recovery and stability studies. Linearity in plasma was observed over the concentration range 20-3000 ng/mL for griseofulvin. Lower limit of quantification (LLOQ) achieved was 20 ng/mL with precision (CV) less than 10% using 5 microL injection volume. The absolute recovery of analyte (87.36%) and IS (98.91%) from spiked plasma samples was consistent and reproducible. Inter-batch and intra-batch coefficients of variation across four validation runs (LLOQ, LQC, MQC and HQC) was less than 7.5%. The accuracy determined at these levels was within +/-4.2% in terms of relative error. The method was applied to a pilot bioequivalence study of 500 mg griseofulvin tablet in six healthy human subjects under fed condition.  相似文献   

12.
A highly sensitive and specific liquid chromatography/tandem mass spectrometric (LC-MS/MS) method for investigating the pharmacokinetics of adrafinil in rats was developed. Rat serum pretreated by solid-phase extraction (SPE) was analyzed by LC-MS/MS with an electrospray ionization (ESI) interface. The mobile phase consisted of acetonitrile:water:acetic acid (35:65:0.1, v/v/v) in an isocratic elution mode pumped at 1.0ml/min. The analytical column (250mmx4.6mm i.d.) was packed with Kromasil C(18) material (5.0mum). The standard curve was linear from 16.5 to 5000ng/ml. The assay was specific, accurate (R.S.D.<2.6%), precise and reproducible (within- and between-day precisions R.S.D. <7.0% and <9.0%, respectively). Adrafinil in rat serum was stable over three freeze-thaw cycles at ambient temperature for 6h. The method had a lower limit of quantitation of 16.5ng/ml, which offered high sensitivity for the determination of adrafinil in serum. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats.  相似文献   

13.
A specific high performance liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed for the determination of captopryl in plasma. The retention time was 1.45 and 1.37 min for captopril and enalapril, respectively. The overall mean recovery, using SPE extraction with OASIS HLB cartridges, was found to be 107.2+/-9.5 and 100.04+/-2%, respectively. Calibration curves were linear in the concentration range of 10.00-2000.00 ng/ml, and the lower limit of quantification (LLOQ) was 10.00 ng/ml. The LLOQ was sensitive enough for detecting terminal phase concentrations of the drug. Inter-batch precision of the method ranged from 0.88 to 1.95%. Intra-batch accuracy ranged from 97.15 to 105.77%, while intra-batch precision ranged from 2.49 to 5.66% at concentrations of 30.00, 760.00 and 1500.00 ng/ml. The developed method was applied to study bioequivalence of captopril in a group of 25 human subjects at a single oral dose of a 50mg tablet.  相似文献   

14.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous estimation of hydrochlorothiazide, quinapril and its metabolite quinaprilat in human plasma. After solid phase extraction (SPE), the analytes and IS were chromatographed on a hypurity C8 (100mmx2.1mm i.d., 5mum particle size) column using 2muL injection volume with a run time of 2.8min. An isocratic mobile phase consisting of 0.5% (v/v) formic acid:acetonitrile (25:75, v/v) was used to separate all these drugs. The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring mode (MRM) without polarity switch. The proposed method was validated over the range of 5-500ng/mL for hydrochlorothiazide method and 5-1500ng/mL for quinapril and quinaprilat. Inter-batch and intra-batch precision (coefficient of variation - % CV) across five validation runs lower limit of quantitation (LLOQ), lower quality control (LQC), middle quality control (MQC), higher quality control (HQC) and upper limit of quantitation (ULOQ) was less than 15. The accuracy determined at these levels was within +/-13% in terms of relative percentage error.  相似文献   

15.
A rapid equilibrium dialysis (RED) assay followed by a solid phase extraction (SPE) high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for the quantitative determination of unbound vismodegib in human plasma was developed and validated. The equilibrium dialysis was carried out using 0.3 mL plasma samples in the single-use plate RED system at 37°C for 6h. The dialysis samples (0.1 mL) were extracted using a Strata-X-C 33u Polymeric Strong Cation SPE plate and the resulting extracts were analyzed using reverse-phase chromatography and positive electrospray ionization (ESI) mass spectrometry. The standard curve, which ranged from 0.100 to 100 ng/mL for vismodegib, was fitted to a 1/x(2) weighted linear regression model. The lower limit of quantitation (LLOQ, 0.100 ng/mL) was sufficient to quantify unbound concentrations of vismodegib after dialysis. The intra-assay precision of the LC-MS/MS assay, based on the four analytical QC levels (LLOQ, low, medium and high), was within 7.7% CV and inter-assay precision was within 5.5% CV. The assay accuracy, expressed as %Bias, was within ±4.0% of the nominal concentration values. Extraction recovery of vismodegib was between 77.9 and 84.0%. The assay provides a means for accurate assessment of unbound vismodegib plasma concentrations in clinical studies.  相似文献   

16.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

17.
Reliable MS-based methods have been developed for the measurement of free and esterified F2-isoprostanes. However, prior to sample analysis several steps of purification, including solid-phase extraction followed by TLC or HPLC, are usually required, making it tedious to analyze large sample numbers, e.g., for population studies. We report a quick sample purification method using anion exchange solid phase extraction (SPE), which is highly selective for acidic compounds. Urine and hydrolyzed plasma of healthy individuals were acidified before SPE extraction, washed with 4 different solvent mixtures and finally eluted with ethyl acetate. The eluted samples were first derivatized with pentafluorobenzyl bromide followed by a second derivatization with bis-(trimethylsilyl)trifluoroacetamide. F2-isoprostanes were analyzed by GC-MS-NCI. The method was highly sensitive; the limit of detection at 5:1 signal-to-noise ratio was 0.037 ng/ml and 0.007 ng/mg creatinine for plasma and urine, respectively. Anion exchange SPE extraction for F2-isoprostane showed recovery of 55-65% and high linearity for concentration 0-1.0 ng/ml for urine (CV=4.08%, r2=0.990) and 0-0.5 ng/ml for plasma (CV=4.07%, r2=0.998). Fasting for 6h significantly increased plasma F2-isoprostanes levels, which has implications for the design of intervention studies using this biomarker.  相似文献   

18.
A liquid chromatography-mass spectrometry method (LC-MS/MS) for the quantitative determination of rifaximin in human plasma was developed and validated. In the developed procedure, metoprolol was added to human plasma as an internal standard (IS) and acetonitrile was used to precipitate the plasma proteins before LC-MS/MS analysis. Chromatographic separation was obtained on a RESTEK Pinnacle C18 column (50 mm x 2.1mm, 5 microm) with a mobile phase consisted of ammonium acetate solution (15 mM, pH 4.32) as buffer A and methanol as mobile phase B. Quantification was performed in positive mode using multiple reaction monitoring (MRM) of the transitions m/z 786.1-->754.1 for rifaximin and m/z 268.3-->116.1 for the IS. The assay has been validated over the concentration range of 0.5-10 ng/ml (r=0.9992) based on the analysis of 0.2 ml of plasma. The assay accuracy was between 98.2% and 109%. The within-day and between-day precision was better than 3.9% and 8.9% at three concentration levels. The freeze-thaw stability was also investigated and it was found that both rifaximin and the IS were quite stable. This method provides a rapid, sensitive, specific and robust tool for the quantitative determination of rifaximin in human plasma, which is especially useful for the pharmacokinetic study of rifaximin.  相似文献   

19.
A sensitive and selective method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the quantitative determination of loperamide in human plasma. Automated solid-phase extraction (SPE) on disposable extraction cartridges (DEC) is used to isolate the compounds from the biological matrix and to prepare a cleaner sample before injection and analysis in the LC-MS/MS system. After conditioning, the plasma sample is loaded on the DEC filled with endcapped ethyl silica (C2(EC)) and washed twice with water. The analytes are therefore eluted by dispensing methanol. The eluate is then collected and added with ammonium acetate solution in order to inject an aliquot of this final extract in the LC-MS/MS system. On-line LC-MS/MS system using atmospheric pressure chemical ionization (APCI) has been developed for the determination of loperamide. The separation is obtained on a octadecylsilica based stationary phase using a mobile phase consisting in a mixture of methanol and 5mM ammonium acetate solution (25:75, v/v). Clonazepam is used as internal standard (IS). The MS/MS ion transitions monitored are m/z 477--> 266 and 316--> 270 for loperamide and clonazepam, respectively. The most appropriate regression model of the response function as well as the limit of quantitation were first selected during the pre-validation step. These latter criteria were then assessed during the formal validation step. The limit of quantitation (LOQ) was around 50 pg/ml for loperamide. The method was also validated with respect to recovery, precision, trueness, accuracy and linearity.  相似文献   

20.
A sensitive liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of rosuvastatin in human plasma. The plasma samples were prepared using liquid-liquid extraction with ethyl ether. Chromatographic separation was accomplished on a Zorbax XDB-C18 (150 mm x 4.6 mm i.d., 5 microm) column. The mobile phase consisted of methanol-water (75:25, v/v, adjusted to pH 6 by aqueous ammonia). Detection of rosuvastatin and the internal standard (IS) hydrochlorothiazide was achieved by ESI MS/MS in the negative ion mode. The lower limit of quantification was 0.020 ng/ml by using 200 microl aliquots of plasma. The linear range of the method was from 0.020 to 60.0 ng/ml. The intra- and inter-day precisions were lower than 8.5% in terms of relative standard deviation (RSD), and the accuracy was within -0.3 to 1.9% in terms of relative error (RE). Compared with the existing methods, the validated method offered increased sensitivity. The method was successfully applied for the evaluation of pharmacokinetics of rosuvastatin after single oral doses of 5, 10 and 20 mg rosuvastatin to 10 healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号