首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
In mammals, ghrelin is a non-amidated peptide hormone, existing in both acylated and non-acylated forms, produced mainly from the X/A or ghrelin cells present in the mucosal layer of the stomach. Ghrelin is a natural ligand of the growth hormone (GH) secretagogue-receptor (GHS-R), and functions primarily as a GH-releasing hormone and an orexigen, as well as having several other biological actions. Among non-mammalian vertebrates, amino acid sequence of ghrelin has been reported in two species of cartilaginous fish, seven species of teleosts, two species of amphibians, one species of reptile and six species of birds. The structure and functions of ghrelin are highly conserved among vertebrates. This review presents a concise overview of ghrelin biology in non-mammalian vertebrates.  相似文献   

4.
Adult neurogenesis in non-mammalian vertebrates   总被引:1,自引:0,他引:1  
Adult neurogenesis is an exciting and rapidly advancing field of research. It addresses basic biological questions, such as the how and why of de novo neuronal production during adulthood, as well as medically relevant issues, including the potential link between adult neural stem cells and psychiatric disorders, or how stem cell manipulation might be used as a strategy for neuronal replacement. Current research mainly focuses on rodents, but we review here recent examination of non-mammalian vertebrates, which demonstrates that bona fide adult neural stem cells exist in these species. Importantly, especially in teleost fish, these cells can be abundant and located in various brain areas. Hence, non-mammalian vertebrate species provide invaluable comparative material for extracting core mechanisms of adult neural stem cell maintenance and fate.  相似文献   

5.
In mammals, ghrelin is a non-amidated peptide hormone, existing in both acylated and non-acylated forms, produced mainly from the X/A or ghrelin cells present in the mucosal layer of the stomach. Ghrelin is a natural ligand of the growth hormone (GH) secretagogue-receptor (GHS-R), and functions primarily as a GH-releasing hormone and an orexigen, as well as having several other biological actions. Among non-mammalian vertebrates, amino acid sequence of ghrelin has been reported in two species of cartilaginous fish, seven species of teleosts, two species of amphibians, one species of reptile and six species of birds. The structure and functions of ghrelin are highly conserved among vertebrates. This review presents a concise overview of ghrelin biology in non-mammalian vertebrates.  相似文献   

6.
The use of non-human animal models for infection experiments is important for investigating the infectious processes of human pathogenic bacteria at the molecular level. Mammals, such as mice and rabbits, are also utilized as animal infection models, but large numbers of animals are needed for these experiments, which is costly, and fraught with ethical issues. Various non-mammalian animal infection models have been used to investigate the molecular mechanisms of various human pathogenic bacteria, including Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa. This review discusses the desirable characteristics of non-mammalian infection models and describes recent non-mammalian infection models that utilize Caenorhabditis elegans, silkworm, fruit fly, zebrafish, two-spotted cricket, hornworm, and waxworm.  相似文献   

7.
The luminal surface of the chemosensory epithelia of the main olfactory organ of terrestrial vertebrates is covered by a layer of fluid. The source of this fluid layer varies among vertebrates. Little is known regarding the relative development of the sources of fluid (sustentacular cells and Bowman's glands) in reptiles, especially in gekkotan lizards (despite recent assertions of olfactory speciality). This study examined the extent and morphology of the main olfactory organ in several Australian squamate reptiles, including three species of gekkotans, two species of skinks and one snake species. The olfactory mucosa of two gekkotan species (Christinus marmoratus and Strophurus intermedius) is spread over a large area of the nasal cavity. Additionally, the sustentacular cells of all three gekkotan species contained a comparatively reduced number of secretory granules, in relation to the skinks or snake examined. These observations imply that the gekkotan olfactory system may function differently from that of either skinks or snakes. Similar variation in secretory granule abundance was previously noted between mammalian and non-mammalian olfactory sustentacular cells. The observations in gekkotans suggests that the secretory capacity of the non-mammalian olfactory sustentacular cells show far more variation than initially thought.  相似文献   

8.
The conservation status of invertebrates is usually lesser known than that of vertebrates, and strategies to identify biotopes to preserve invertebrate diversity are typically based on a single surrogate taxon, or even on the use of vertebrates as surrogates. Aim of this research is to illustrate a method for biotope prioritisation that can be easily adapted to different animal groups and geographical contexts. A two-step protocol for biotope prioritisation is proposed on the basis of a multidimensional characterisation of species vulnerability. Firstly, species vulnerability is estimated from rarity measures which include geographical range, abundance and biotope specialisation. Then, these values of vulnerability are used to rank biotopes. The method was applied here to the tenebrionid beetles, the butterflies, the birds and the mammals of the Central Apennines, a montane area of high conservation concern for South Europe. This study provides evidence for the importance of including insects in conservation decisions, because vertebrates are poor surrogates for insects. Conservation efforts in the reserves included in the study area are mostly focused on vertebrates, for which woodlands are considered particularly important. However high altitude open biotopes are crucial for both tenebrionids and butterflies, and preservation of such kind of biotopes would be beneficial also for vertebrates. The approach applied here demonstrates that (1) vertebrates are poor surrogates for insects, and (2) measures of species rarity, typically used in vertebrate conservation, can be obtained also for insects, for which a veritable amount of data are hidden in specialised literature and museum collections.  相似文献   

9.
An outstanding candidate for a primary male-determining gene equivalent to Sry of mammals has been recently described from a non-mammalian vertebrate, the medaka fish (Oryzias latipes). However, the universality of dmY/dmrt1Y as the master sex-determining gene in fish is questionable. Phylogenetic analysis shows that dmY/dmrt1Y is an evolutionarily young Y chromosome-specific duplicate of a gene involved in testis development in vertebrates, and that this duplicate cannot be the primary sex-determining gene in most other fish species. Study of alternative fish models will probably uncover new genetic strategies controlling sexual dimorphism in vertebrates.  相似文献   

10.
光动力疗法(photodynamic therapy,PDT)是利用特定波长的激发光照射生物靶标上的光敏剂,从而产生活性氧并有效杀伤多种耐药病原体的新型治疗方式,具有作用广、安全可控、不易耐受等优点。大量体外实验已证实了PDT疗效,但目前动物实验数据较少,且治疗参数不一,一定程度上影响了PDT在临床治疗中的广泛应用。本文综述近年来PDT用于体内抗感染治疗的动物模型构建、治疗方案设计等方面的研究进展,为未来PDT抗感染研究及临床应用提供参考。  相似文献   

11.

Background  

The Nme family, previously known as Nm23 or NDPK, is involved in various molecular processes including tumor metastasis and some members of the family, but not all, exhibit a Nucleoside Diphosphate Kinase (NDPK) activity. Ten genes are known in humans, in which some members have been extensively studied. In non-mammalian species, the Nme protein family has received, in contrast, far less attention. The picture of the vertebrate Nme family remains thus incomplete and orthology relationships with mammalian counterparts were only partially characterized. The present study therefore aimed at characterizing the Nme gene repertoire in vertebrates with special interest for teleosts, and providing a comprehensive overview of the Nme gene family evolutionary history in vertebrates.  相似文献   

12.
The control of gut motility   总被引:6,自引:0,他引:6  
Gut motility in non-mammalian vertebrates as in mammals is controlled by the presence of food, by autonomic nerves and by hormones. Feeding and the presence of food initiates contractions of the stomach wall and subsequently gastric emptying, peristalsis, migrating motor complexes and other patterns of motility follow. This overview will give examples of similarities and differences in control systems between species. Gastric receptive relaxation occurs in fish and is an enteric reflex. Cholecystokinin reduces the rate of gastric emptying in fish as in mammals. Inhibitory control of peristalsis is exerted, e.g. by VIP, PACAP, NO in fish and amphibians, while excitatory stimuli arise from nerves releasing tachykinins, acetylcholine or serotonin (5-HT). In crocodiles, we have found the presence of the same nerve types, although the effects on peristalsis have not been studied. Recent studies on signal transduction in the gut smooth muscle of fish and amphibians suggest that external Ca2+ is of great importance, but not the only source of Ca2+ recruitment in tachykinin-, acetylcholine- or serotonin-induced contractions of rainbow trout and Xenopus gastrointestinal smooth muscle. The effect of acetylcholine involves reduction of cAMP-levels in the smooth muscle cells. It is concluded that, in general, the control systems in non-mammalian vertebrates are amazingly similar between species and animal groups and in comparison with mammals.  相似文献   

13.
IACUC issues associated with amphibian research   总被引:1,自引:0,他引:1  
Numerous species of amphibians are frequently utilized as animal models in biomedical research. Despite their relatively common occurrence as laboratory animals, the regulatory guidelines that institutional animal care and use committees (IACUCs) must employ provide little in the way of written standards for ectothermic animals. Yet, as vertebrates, laboratory amphibians are covered by the National Research Council Guide for the Care and Use of Laboratory Animals and the Public Health Service (PHS) Policy for federally funded research. This article focuses on three issues that are relevant to IACUC oversight of the use of amphibians in research: (1) recommended educational requirements of investigators and animal care staff engaged in research with amphibians, (2) zoonoses and other issues of occupational health importance, and (3) indicators of stress and disease. Addressing these issues should enable investigators, IACUCs, and animal care staff to meet the regulatory expectations of the PHS and accrediting bodies such as the Association for Assessment and Accreditation of Laboratory Animal Care International.  相似文献   

14.
The tree shrews are non-rodent, primate-like, small animals. There is increasing interest in using them to establish animal models for medical and biological research. This review focuses on the use of the tree shrews in in vivo studies on viral hepatitis, hepatocellular carcinoma (HCC), myopia, and psychosocial stress. Because of the susceptibility of the tree shrews (Tupaia belangeri) and their hepatocytes to infection with human hepatitis B virus (HBV) in vivo and in vitro, these animals have been used to establish human hepatitis virus-induced hepatitis and human HBV- and aflatoxin B1-associated HCC models. As these animals are phylogenetically close to primates in evolution and have a well-developed visual system and color vision in some species, they have been utilized to establish myopia models. Because dramatic behavioral, physiological, and neuroendocrine changes in subordinate male tree shrews are similar to those observed in depressed human patients, the tree shrews have been successfully employed to experimentally study psychosocial stress. However, the tree shrews holds significant promise as research models and great use could be made of these animals in biomedical research.  相似文献   

15.
DNA methylation in animal development   总被引:1,自引:0,他引:1  
Nuclear transfer experiments have demonstrated that epigenetic mechanisms operate to limit gene expression during animal development. In somatic cells, silenced genes are associated with defined chromatin states which are characterised by hypermethylation of DNA, hypoacetylation of histones and specific patterns of methylation at distinct residues of the N-terminal tails of histone H3 and H4. This review describes the role of the DNA methylation-mediated repression system (Dnmt1's, MeCPs and MBDs and associated chromatin remodelling activities) in animal development. DNA methylation is essential for normal vertebrate development but has distinct regulatory roles in non-mammalian and mammalian vertebrates. In mammals, DNA methylation has an additional role in regulating imprinting. This suggests that epigenetic regulation is plastic in its application and should be considered in a developmental context that may be species specific.  相似文献   

16.
Summary The endocrine system of the gastro-intestinal tract of selected species representing the five higher vertebrate classes was investigated with reference to occurrence and distribution of neurotensin-like immunoreactive cells. Using antibodies against C-terminal and N-terminal fragments of neurotensin and against the C-terminal sequence of xenopsin it was demonstrated that the intestine of all species studied contains endocrine, neurotensin-like immunoreactive cells. However, large differences in localization and frequency of these neurotensin-like immunoreactive cells were found. Except for a teleostean fish, neurotensin-like immunoreactive cells in the gastro-intestinal tract were more frequent in non-mammalian vertebrates than in mammals. In contrast to mammals, where the highest density of neurotensin-like immunoreactive cells was present in the ileal mucosa, in the non-mammalian vertebrates studied the corresponding cells were most abundant in the pyloric-duodenal junction. The exact mapping of neurotensin-like immunoreactive cells is presented throughout the entire gastro-intestinal tract of six species (Rattus, Coturnix, Lacerta, Rana, Xenopus, Carassius) including a quantitative evaluation of sequential serial sections.  相似文献   

17.
Understanding the complex interaction between gametes or embryos and the maternal genital tract requires the use of experimental models. The selection of the right model is an important task to undertake, and despite many new developments in this area, an ideal model system has not yet been developed. In this review article, we focus on how the most appropriate model species and model system can be selected, each with its particular advantages and disadvantages. Selection criteria need to be based on the evaluation of the aim of the experiment, the tools that are available to the scientist, and the ethics that are involved in working with particular animal species and model systems. Society and politics direct scientists to “Refine, Reduce, and Replace” the use of experimental animals, which means that the use of in vivo models is increasingly being discouraged. An in vivo model allows experimentation in the full biological environment of a living organism. In contrast with in vivo models, in vitro models are less complex and are abstracts of in vivo systems, leading often to results that are different from the in vivo situation. If an investigator could understand all the components of a complex biological system and re-create them as individual smaller models in a computer, he or she could create in silico models that would completely represent the complexity of in vivo models. We predict that in the future, in silico modeling will be the natural departure from in vivo, in situ, and in vitro modeling approaches. In addition to numerous advantages that this modeling approach can bring to studying maternal interaction with gametes and embryo, it is perhaps the only true alternative method to animal experimentation.  相似文献   

18.
In mammals, much is understood about the endothelial and neural NO control mechanisms in the vasculature. In contrast, NO control of blood vessels in lower vertebrates is poorly understood, with the majority of research focusing on the presence of an endothelial NO system; however, its presence remains controversial. This study examined the mechanisms by which NO regulates the large blood vessels of non-mammalian vertebrates. In all species examined, the arteries and veins contained a plexus of NOS-positive perivascular nerves that included nerve bundles and fine, varicose nerve terminals. However, in the large arteries and veins of various species of fishes and amphibians, no anatomical evidence was found for endothelial NOS using both NADPH-diaphorase and eNOS immunohistochemistry. In contrast, perinuclear NOS staining was readily apparent in blue-tongue lizard, pigeon and rat, which suggested that eNOS first appeared in reptiles. Physiological analysis of NO signalling in the vascular smooth muscle of short-finned eel and cane toad could not find any evidence for endothelial NO signalling. In contrast, it appears that activation of the nitrergic vasomotor nerves is responsible for NO control of the blood vessels.  相似文献   

19.
Human and animal hepatocytes are now being used as an in vitro technique to aid drug discovery by predicting the in vivo metabolic pathways of drugs or new chemical entities (NCEs), identifying drug-metabolizing enzymes and predicting their in vivo induction. Because of the difficulty of establishing whether the cytotoxic susceptibility of human hepatocytes to xenobiotics/drugs in vitro could be used to predict in vivo human hepatotoxicity, a comparison of the susceptibility of the hepatocytes of human and animal models to six chemical classes of drugs/xenobiotics in vitro have been related to their in vivo hepatotoxicity and the corresponding activity of their metabolizing enzymes. This study showed that the cytotoxic effectiveness of 16 halobenzenes towards rat hepatocytes in vitro using higher doses and short incubation times correlated well with rat hepatotoxic effectiveness in vivo with lower doses/longer times. The hepatic/hepatocyte xenobiotic metabolizing enzyme activities of various animal species and human have been reviewed for use by veterinarians and research scientists. Where possible, recommendations have been made regarding which animal hepatocyte model is most applicable for modeling the susceptibility to xenobiotic induced hepatotoxicity of those humans with slow versus rapid metabolizing enzyme polymorphisms. These recommendations are based on the best human fit for animal drug/xenobiotic metabolizing enzymes in terms of activity, kinetics and substrate/inhibitor specificity. The use of human hepatocytes from slow versus rapid metabolizing individuals for drug metabolism/cytotoxicity studies; and the research use of freshly isolated rat hepatocytes and "Accelerated Cytotoxicity Mechanism Screening" (ACMS) techniques for identifying drug/xenobiotic reactive metabolites are also described. Using these techniques the molecular hepatocytotoxic mechanisms found in vitro for seven classes of xenobiotics/drugs were found to be similar to the rat hepatotoxic mechanisms reported in vivo.  相似文献   

20.
The KiSS1/GPR54 system in fish   总被引:1,自引:0,他引:1  
Elizur A 《Peptides》2009,30(1):164-170
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号