首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.  相似文献   

4.
Deciphering molecular interactions between the malaria parasite and its mosquito vector is an emerging area of research that will be greatly facilitated by the recent sequencing of the genomes of Anopheles gambiae mosquito and of various Plasmodium species. So far, most such studies have focused on Plasmodium berghei, a parasite species that infects rodents and is more amenable to studies. Here, we analysed the expression pattern of nine An.gambiae genes involved in immune surveillance during development of the human malaria parasite P.falciparum in mosquitoes fed on parasite-containing blood from patients in Cameroon. We found that P.falciparum ingestion triggers a midgut-associated, as well as a systemic, response in the mosquito, with three genes, NOS, defensin and GNBP, being regulated by ingestion of gametocytes, the infectious stage of the parasite. Surprisingly, we found a different pattern of expression of these genes in the An.gambiae-P.berghei model. Therefore, differences in mosquito reaction against various Plasmodium species may exist, which stresses the need to validate the main conclusions suggested by the P.berghei-An.gambiae model in the P.falciparum-An.gambiae system.  相似文献   

5.
Anopheles gambiae, the major vector of human malaria parasite, is an important insect model to study vector–parasite interactions. Here, we developed a simple in vivo double-stranded RNA (dsRNA) knockout approach to determine the function of the mosquito antimicrobial peptide gene Defensin. We injected dsRNA into adults and observed efficient and reproducible silencing of Defensin. Analysis of the knockdown phenotype revealed that this peptide is required for the mosquito antimicrobial defense against Gram-positive bacteria. In contrast, in mosquitoes infected by Plasmodium berghei, no loss of mosquito viability and no significant effect on the development and morphology of the parasite midgut stages were observed in the absence of Defensin. We conclude that this peptide is not a major antiparasitic factor in A. gambiae in vivo. Our results open new perspectives for the study of mosquito gene function in vivo and provide a basis for genome-scale systematic functional screens by targeted gene silencing.  相似文献   

6.
7.
Malaria, a disease that infects 300 million people throughout the world and kills more than a million people, mostly children in sub-Saharan Africa, involves three organisms. The human host where the disease is seen, the protozoan Plasmodium parasite and the mosquito. The parasite is transmitted to humans only by the mosquito vector, which in sub-Saharan regions is generally Anopheles gambiae. Malaria along with AIDS and tuberculosis are killing large numbers of people and crippling the economies of the affected African countries. Though an enormous effort has been made during the past twenty years to develop vaccines to block malaria in humans, the incidence of the disease is increasing in Africa. The reasons for this development include a breakdown in mosquito control related to increased insecticide resistance, as well as increased parasite resistance to antimalarial drugs. It is clear that new methods of Anopheles mosquito control are needed to ameliorate the medical and economic situation in sub-Saharan Africa. As a step toward new malaria control methods, the international Plasmodium falciparum and Anopheles gambiae consortia have carried out the full genome sequencing of the most deadly malaria parasite and the most efficient vector. These, combined with the human genome sequence, provide the genomic infrastructure for a better understanding of the complex interactions within the malaria triad. This essay discusses possible strategies as to how the Anopheles genome can contribute to malaria control.  相似文献   

8.
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.  相似文献   

9.
Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex.  相似文献   

10.
We performed a forward genetic screen, using Drosophila as a surrogate mosquito, to identify host factors required for the growth of the avian malaria parasite, Plasmodium gallinaceum. We identified 18 presumed loss-of-function mutants that reduced the growth of the parasite in flies. Presumptive mutation sites were identified in 14 of the mutants on the basis of the insertion site of a transposable element. None of the identified genes have been previously implicated in innate immune responses or interactions with Plasmodium. The functions of five Anopheles gambiae homologs were tested by using RNAi to knock down gene function followed by measuring the growth of the rodent parasite, Plasmodium berghei. Loss of function of four of these genes in the mosquito affected Plasmodium growth, suggesting that Drosophila can be used effectively as a surrogate mosquito to identify relevant host factors in the mosquito.  相似文献   

11.
Mosquito immunity against Plasmodium   总被引:6,自引:0,他引:6  
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.  相似文献   

12.
Despite being phylogenetically very close to Anopheles gambiae, the major mosquito vector of human malaria in Africa, Anopheles quadriannulatus is thought to be a non-vector. Understanding the difference between vector and non-vector mosquitoes can facilitate development of novel malaria control strategies. We demonstrate that An. quadriannulatus is largely resistant to infections by the human parasite Plasmodium falciparum, as well as by the rodent parasite Plasmodium berghei. By using genetics and reverse genetics, we show that resistance is controlled by quantitative heritable traits and manifested by lysis or melanization of ookinetes in the mosquito midgut, as well as by killing of parasites at subsequent stages of their development in the mosquito. Genes encoding two leucine-rich repeat proteins, LRIM1 and LRIM2, and the thioester-containing protein, TEP1, are identified as essential in these immune reactions. Their silencing completely abolishes P. berghei melanization and dramatically increases the number of oocysts, thus transforming An. quadriannulatus into a highly permissive parasite host. We hypothesize that the mosquito immune system is an important cause of natural refractoriness to malaria and that utilization of this innate capacity of mosquitoes could lead to new methods to control transmission of the disease.  相似文献   

13.
14.
The three-gene APL1 locus encodes essential components of the mosquito immune defense against malaria parasites. APL1 was originally identified because it lies within a mapped QTL conferring the vector mosquito Anopheles gambiae natural resistance to the human malaria parasite, Plasmodium falciparum, and APL1 genes have subsequently been shown to be involved in defense against several species of Plasmodium. Here, we examine molecular population genetic variation at the APL1 gene cluster in spatially and temporally diverse West African collections of A. gambiae. The locus is extremely polymorphic, showing evidence of adaptive evolutionary maintenance of genetic variation. We hypothesize that this variability aids in defense against genetically diverse pathogens, including Plasmodium. Variation at APL1 is highly structured across geographic and temporal subpopulations. In particular, diversity is exceptionally high during the rainy season, when malaria transmission rates are at their peak. Much less allelic diversity is observed during the dry season when mosquito population sizes and malaria transmission rates are low. APL1 diversity is weakly stratified by the polymorphic 2La chromosomal inversion but is very strongly subdivided between the M and S "molecular forms." We find evidence that a recent selective sweep has occurred at the APL1 locus in M form mosquitoes only. The independently reported observation of a similar M-form restricted sweep at the Tep1 locus, whose product physically interacts with APL1C, suggests that epistatic selection may act on these two loci causing them to sweep coordinately.  相似文献   

15.
Anopheles gambiae is the mosquito vector responsible for transmitting Plasmodium falciparum, a malaria parasite of humans. With the emergence of genome projects for a variety of prokaryotic and eukaryotic microorganisms, there has been a long-standing interest in sequencing the genomes of the malaria parasite and its insect vector. This tour de force effort has now been completed and reported. The alignment of putative orthologs in An. gambiae with those of Drosophila melanogaster highlights several similarities and differences. These findings could have implications in: (1) identifying new targets for insecticide development; (2) strengthening our understanding of the developmental biology of mosquitoes; and (3) possibly controlling pathogen transmission. A brief overview of these interesting findings and the implications for further studies will be discussed here.  相似文献   

16.
17.
The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism.  相似文献   

18.
Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects.  相似文献   

19.
HS (heparan sulfate) has been shown to be an important mediator of Plasmodium sporozoite homing and invasion of the liver, but the role of this glycosaminoglycan in mosquito vector host-sporozoite interactions is unknown. We have biochemically characterized the function of AgOXT1 (Anopheles gambiae peptide-O-xylosyltransferase 1) and confirmed that AgOXT1 can modify peptides representing model HS and chondroitin sulfate proteoglycans in vitro. Moreover, we also demonstrated that the mosquito salivary gland basal lamina proteoglycans are modified by HS. We used RNA interference-mediated knockdown of HS biosynthesis in A. gambiae salivary glands to determine whether Plasmodium falciparum sporozoites that are released from mosquito midgut oocysts use salivary gland HS as a receptor for tissue invasion. Our results suggest that salivary gland basal lamina HS glycosaminoglycans only partially mediate midgut sporozoite invasion of this tissue, and that in the absence of HS, the presence of other surface co-receptors is sufficient to facilitate parasite entry.  相似文献   

20.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号