首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

2.
3.
Structural investigation and morphometry of meiotic chromosomes by scanning electron microscopy (in comparison to light microscopy) of all stages of condensation of meiosis I + II show remarkable differences during chromosome condensation in mitosis and meiosis I of rye (Secale cereale) with respect to initiation, mode and degree of condensation. Mitotic chromosomes condense in a linear fashion, shorten in length and increase moderately in diameter. In contrast, in meiosis I, condensation of chromosomes in length and diameter is a sigmoidal process with a retardation in zygotene and pachytene and an acceleration from diplotene to diakinesis. The basic structural components of mitotic chromosomes of rye are "parallel fibers" and "chromomeres" which become highly compacted in metaphase. Although chromosome architecture in early prophase of meiosis seems similar to mitosis in principle, there is no equivalent stage during transition to metaphase I when chromosomes condense to a much higher degree and show a characteristic "smooth" surface. No indication was found for helical winding of chromosomes either in mitosis or in meiosis. Based on measurements, we propose a mechanism for chromosome dynamics in mitosis and meiosis, which involves three individual processes: (i) aggregation of chromatin subdomains into a chromosome filament, (ii) condensation in length, which involves a progressive increase in diameter and (iii) separation of chromatids.  相似文献   

4.
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.  相似文献   

5.
Cobb J  Miyaike M  Kikuchi A  Handel MA 《Chromosoma》1999,108(7):412-425
Mechanisms of chromosome condensation and segregation during the first meiotic division are not well understood. Resolution of recombination events to form chiasmata is important, for it is chiasmata that hold homologous chromosomes together for their oppositional orientation on the meiotic metaphase spindle, thus ensuring their accurate segregation during anaphase I. Events at the centromere are also important in bringing about proper attachment to the spindle apparatus. This study was designed to correlate the presence and activity of two proteins at the centromeric heterochromatin, topoisomerase II alpha (TOP2A) and histone H3, with the processes of chromosome condensation and individualization of chiasmate bivalents in murine spermatocytes. We tested the hypothesis that phosphorylation of histone H3 is a key event instigating localization of TOP2A to the centromeric heterochromatin and condensation of chromosomes as spermatocytes exit prophase and progress to metaphase. Activity of topoisomerase II is required for condensation of chromatin at the end of meiotic prophase. Histone H3 becomes phosphorylated at the end of prophase, beginning with its phosphorylation at the centromeric heterochromatin in the diplotene stage. However, it cannot be involved in localization of TOP2A, since TOP2A is localized to the centromeric heterochromatin throughout most of meiotic prophase. This observation suggests a meiotic function for TOP2A in addition to its role in chromatin condensation. The use of kinase inhibitors demonstrates that phosphorylation of histone H3 can be uncoupled from meiotic chromosome condensation; therefore other proteins, such as those constituting metaphase-promoting factor, must be involved. These results define the timing of important meiotic events at the centromeric heterochromatin and provide insight into mechanisms of chromosome condensation for meiotic metaphase.  相似文献   

6.
Production of haploid gametes relies on the specially regulated meiotic cell cycle. Analyses of the role of essential mitotic regulators in meiosis have been hampered by a shortage of appropriate alleles in metazoans. We characterized female-sterile alleles of the condensin complex component dcap-g and used them to define roles for condensin in Drosophila female meiosis. In mitosis, the condensin complex is required for sister-chromatid resolution and contributes to chromosome condensation. In meiosis, we demonstrate a role for dcap-g in disassembly of the synaptonemal complex and for proper retention of the chromosomes in a metaphase I-arrested state. The chromosomal passenger complex also is known to have mitotic roles in chromosome condensation and is required in some systems for localization of the condensin complex. We used the QA26 allele of passenger component incenp to investigate the role of the passenger complex in oocyte meiosis. Strikingly, in incenpQA26 mutants maintenance of the synaptonemal complex is disrupted. In contrast to the dcap-g mutants, the incenp mutation leads to a failure of paired homologous chromosomes to biorient, such that bivalents frequently orient toward only one pole in prometaphase and metaphase I. We show that incenp interacts genetically with ord, suggesting an important functional relationship between them in meiotic chromosome dynamics. The dcap-g and incenp mutations cause maternal effect lethality, with embryos from mutant mothers arrested in the initial mitotic divisions.  相似文献   

7.
In mitosis, centrosomes nucleate microtubules that capture the sister kinetochores of each chromosome to facilitate chromosome congression. In contrast, during meiosis chromosome congression on the acentrosomal spindle is driven primarily by movement of chromosomes along laterally associated microtubule bundles. Previous studies have indicated that septin2 is required for chromosome congression and cytokinesis in mitosis, we therefore asked whether perturbation of septin2 would impair chromosome congression and cytokinesis in meiosis. We have investigated its expression, localization and function during mouse oocyte meiotic maturation. Septin2 was modified by SUMO-1 and its levels remained constant from GVBD to metaphase II stages. Septin2 was localized along the entire spindle at metaphase and at the midbody in cytokinesis. Disruption of septins function with an inhibitor and siRNA caused failure of the metaphase I /anaphase I transition and chromosome misalignment but inhibition of septins after the metaphase I stage did not affect cytokinesis. BubR1, a core component of the spindle checkpoint, was labeled on misaligned chromosomes and on chromosomes aligned at the metaphase plate in inhibitor-treated oocytes that were arrested in prometaphase I/metaphase I, suggesting activation of the spindle assembly checkpoint. Taken together, our results demonstrate that septin2 plays an important role in chromosome congression and meiotic cell cycle progression but not cytokinesis in mouse oocytes.  相似文献   

8.
Summary The first pollen grain mitosis in Scilla sibirica takes place within three weeks after the completion of meiosis. Within one anther the duration of the first pollen grain mitotic cycle varies substantially. The duration of the mitotic cycle affects the length of chromosomes at metaphase of the first pollen grain mitosis. In grains which divide early the chromosomes at metaphase are longer, up to twice the length, of the chromosomes in grains dividing late. The diminution in length with increase in the mitotic cycle is due to more intensive coiling which, in turn, is explained by a lengthening of G2 and of prophase. The relationship between the duration of the mitotic cycle and chromosome length at metaphase would account, at least largely, for the variation in chromosome length between different tissues within organisms. It explains also why the chromosome at metaphase of mitosis are shorter in polyploids than in their diploid ancestors.  相似文献   

9.
Success of interspecific hybridization relies mostly on the adequate similarity between the implicated genomes to ensure synapsis, pairing and recombination between appropriate chromosomes during meiosis in allopolyploid species. Allotetraploid Brassica napus (AACC) is a model of natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), which are originally derived from a common ancestor, but genomic constitution of the same chromosomes probably varied among these species through time after establishment, giving rise to cytogenetic difference in the synthetic hybrids. Herein we investigated meiotic behaviors of A and C chromosomes of synthetic allotriploid Brassica hybrids (ACC) at molecular and cytological levels, which result from the interspecific cross between natural B. napus (AACC) and B.oleracea (CC), and the results showed that meiosis course was significantly aberrant in allotriploid Brassica hybrids, and chromosomes aligned chaotically at metaphase I, chromosome bridges and lags were frequently observed from later metaphase I to anaphase II during meiosis. Simultaneously, we also noticed that meiosis-related genes were abruptly down-regulated in allotriploid Brassica hybrids, which likely accounted for irregular scenario of meiosis observed in these synthetic hybrids. Therefore, these results indicated that inter-genomic exchanges of A and C chromosomes could occur frequently in synthetic Brassica hybrids, and provided an efficient approach for genetic changes of homeologous chromosomes during meiosis in polyploid B.napus breeding program.  相似文献   

10.
D Rose  W Thomas  C Holm 《Cell》1990,60(6):1009-1017
To understand better the similarities and differences between meiosis and mitosis, we examined the meiotic role of DNA topoisomerase II, an enzyme that is required mitotically to disentangle sister chromatids at the time of chromosome segregation. In meiosis, we found that topoisomerase II is required only at the time of nuclear division. When cold-sensitive top2 mutants are induced to sporulate at the restrictive temperature, they undergo premeiotic DNA synthesis and commitment to meiotic levels of recombination but fail to complete the first meiotic nuclear division. The introduction of a mutation blocking recombination relieves the requirement for topoisomerase II in meiosis I. These results suggest that topoisomerase II is required at the time of chromosome segregation in meiosis I for the resolution of recombined chromosomes.  相似文献   

11.
Budding yeast PDS5 is an essential gene in mitosis and is required for chromosome condensation and sister chromatid cohesion. Here we report that PDS also is required in meiosis. Pds5p localizes on chromosomes at all stages during meiotic cycle, except anaphase I. PDS5 plays an important role at first meiotic prophase. Failure in function of PDS5 causes premature separation of chromosomes. The loading of Pds5p onto chromosome requires the function of REC8, but the association of Rec8p with chromosome is independent of PDS5. Mutant analysis and live cell imaging indicate that PDS5 play a role in meiosis II as well.  相似文献   

12.
The gene encoding topoisomerase II in yeast is unique and essential, required for both mitotic and meiotic proliferation. The use of temperature-sensitive mutants in topoisomerase II have demonstrated roles in the relaxation of tortional stress, reduction of recombination rates, and in the separation of sister chromatids after replication. In vertebrate cells, topoisomerase II was shown to be the most abundant component of the metaphase chromosomal scaffold, and has been shown to play a role in chromosome condensationin vitro. The cell cycle control of chromosome condensation may well require phosphorylation of topoisomerase II, since the enzyme is more highly phosphorylated in metaphase than in G1. Recent studies have identified casein kinase II as the major enzyme phosphorylating topoisomerase II in intact yeast cells. The target sites of CKII are exclusively in the C-terminal 400 amino acids of topoisomerase II, the region that is most divergent among the eukaryotic type II enzymes and which is absent in the bacterial gyrase homologues.Abbreviations topoII topoisomerase II - CKII Casein Kinase II - SV40 Simian Virus 40  相似文献   

13.
Kalihinol F, a naturally occurring diterpene from a marine sponge, Acanthella sp., inhibited chromosome separation in fertilized starfish (Asterina pectinifera) eggs but allows the first cleavage to occur, thereby forming unseparated metaphase chromosomes which were elongated between the two daughter cells. The chromosomes were eventually torn off in the embryonic cells. Most of the cells gradually lost the chromosomes during the cell cycle progression. The embryonic development halted at the morula stage just before the onset of blastulation. The mitotic failure occurred when kalihinol F was applied to a fertilized egg during the second meiotic process, but not after the completion of the second meiotic division. Kalihinol F inhibited topoisomerase I activity in vitro, but had no effects on activities of DNA polymerases alpha, beta, and gamma, and of topoisomerase II. These results suggest that the topoisomerase I plays an essential role in meiosis II in this species.  相似文献   

14.
It is known that topoisomerase IIalpha is phosphorylated by several kinases. To elucidate the role of phosphorylation of topoisomerase IIalpha in the cell cycle, we have examined the cell cycle behavior of phosphorylated topoisomerase IIalpha in HeLa cells using antibodies against several phospho-oligopeptides of this enzyme. Here we demonstrate that serine1212 in topoisomerase IIalpha is phosphorylated only in the mitotic phase. Using an antibody against an oligopeptide containing phosphoserine-1212 in topoisomerase IIalpha (PS1212), subcellular localization of topoisomerase IIalpha phosphorylated at serine1212 was examined by indirect immunofluorescence staining, and compared with that of overall topoisomerase IIalpha. Serine1212-phosphorylated topoisomerase IIalpha was localized specifically on mitotic chromosomes, but not on interphase chromosomes; this result contrasts with overall topoisomerase IIalpha which was observed on chomosomes in both interphase and mitosis. Serine1212-phosphorylated topoisomerase lIalpha first appeared on chromosome arms in prophase, became concentrated on the centromeres in metaphase, and disappeared in early telophase. In addition, ICRF-193, a catalytic inhibitor of topoisomerase II, prevented accumulation of serine1212-phosphorylated topoisomerase IIalpha at the centromeres. These results indicate that serine1212 of topoisomerase IIalpha is phosphorylated specifically during mitosis, and suggest that the serine1212-phosphorylated topoisomerase IIalpha acts on resolving topological constraint progressively from the chromosome arm to the centromere during metaphase chromosome condensation.  相似文献   

15.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

16.

Background

In Arabidopsis thaliana, the gene Tousled encodes a protein kinase of unknown function, but mutations in the gene lead to flowering and leaf morphology defects. We have recently cloned a mammalian Tousled-L ike K inase (TLK1B) and found that it phosphorylates specifically histone H3, in vitro and in vivo. We now report the effects that overexpression of a kinase-dead mutant of TLK1B mediates in a normal diploid cell line.

Results

Expression of a kinase-dead mutant resulted in reduction of phosphorylated histone H3, which could have consequences in mitotic segregation of chromosomes. When analyzed by FACS and microscopy, these cells displayed high chromosome number instability and aneuploidy. This phenomenon was accompanied by less condensed chromosomes at mitosis; failure of a number of chromosomes to align properly on the metaphase plate; failure of some chromosomes to attach to microtubules; and the occasional presentation of two bipolar spindles. We also used a different method (siRNA) to reduce the level of endogenous TLK1, but in this case, the main result was a strong block of cell cycle progression suggesting that TLK1 may also play a role in progression from G1. This block in S phase progression could also offer a different explanation of some of the later mitotic defects.

Conclusions

TLK1 has a function important for proper chromosome segregation and maintenance of diploid cells at mitosis in mammalian cells that could be mediated by reduced phosphorylation of histone H3 and condensation of chromosomes, although other explanations to the phenotype are possible.
  相似文献   

17.
Analysis of chromosome pairing has been an important tool to assess the genetic similarity of homologous and homoeologous chromosomes in polyploids. However, it is technically challenging to monitor the pairing of specific chromosomes in polyploid species, especially for plant species with a large number of small chromosomes. We developed oligonucleotide-based painting probes for four different potato chromosomes. We demonstrate that these probes are robust enough to monitor a single chromosome throughout the prophase I of meiosis in polyploid Solanum species. Cultivated potato (Solanum tuberosum, 2n?=?4x?=?48) is an autotetraploid. We demonstrate that the four copies of each potato chromosome pair as a quadrivalent in 66–78% of the meiotic cells at the pachytene stage. Solanum demissum (2n?=?6x?=?72) is a hexaploid and has been controversial regarding its nature as an autopolyploid or allopolyploid. Interestingly, no hexavalent pairing was observed in meiosis. Instead, we observed three independent bivalents in 83–98% of the meiotic cells at late diakinesis and early metaphase I for the four chromosomes. These results suggest that S. demissum has evolved into a cytologically stable state with predominantly bivalent pairing in meiosis.  相似文献   

18.
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome “bouquet” was impaired, and all chromosomes were univalent in meiotic metaphase I in 96.8% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase I. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with 14 univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei8-10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.  相似文献   

19.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号