首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Cellular protein synthesis is suppressed during influenza virus infection, allowing for preferential production of viral proteins. To explore the impact of polymerase subunits on protein synthesis, we coexpressed enhanced green fluorescent protein (eGFP) or luciferase together with each polymerase component or NS1 of A/California/04/2009 (Cal) and found that PA has a significant impact on the expression of eGFP and luciferase. Comparison of the suppressive activity on coexpressed proteins between various strains revealed that avian virus or avian-origin PAs have much stronger activity than human-origin PAs, such as the one from A/WSN/33 (WSN). Protein synthesis data suggested that reduced expression of coexpressed proteins is not due to PA''s reported proteolytic activity. A recombinant WSN containing Cal PA showed enhanced host protein synthesis shutoff and induction of apoptosis. Further characterization of the PA fragment indicated that the N-terminal domain (PANt), which includes the endonuclease active site, is sufficient to suppress cotransfected gene expression. By characterizing various chimeric PANts, we found that multiple regions of PA, mainly the helix α4 and the flexible loop of amino acids 51 to 74, affect the activity. The suppressive effect of PANt cDNA was mainly due to PA-X, which was expressed by ribosomal frameshifting. In both Cal and WSN viruses, PA-X showed a stronger effect than the corresponding PANt, suggesting that the unique C-terminal sequences of PA-X also play a role in suppressing cotransfected gene expression. Our data indicate strain variations in PA gene products, which play a major role in suppression of host protein synthesis.  相似文献   

2.
3.
Influenza A virus (IAV) PA-X is a critical ribonuclease protein involved in host cell shutoff but its role in modulating the host immune response to IAV infection remains to be addressed. In this study, host cellular proteins that directly interact with PA-X were screened to investigate the biological function of PA-X in the pathogenesis of IAV infection. The protein ankyrin repeat domain 17 (Ankrd17), a positive regulator of inflammatory responses via the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway, was identified as a specific PA-X binding partner that preferred PA-X to the PA protein. The N-terminal ankyrin repeats of Ankrd17 are the key domain for the interaction with PA-X rather than PA, which is required for the function of Ankrd17 in elevating the host immune response. Using Ankrd17 knockout and overexpression, we confirmed that PA-X significantly affected the Ankrd17-mediated response to infection in host cells. Our data therefore reveal a novel function for PA-X in the regulation of innate immune pathways via the interaction between PA-X and Ankrd17.  相似文献   

4.
Transient receptor potential (TRP) channels are a family of cation channels involved in diverse cellular functions. They are composed of a transmembrane domain of six putative transmembrane segments flanked by large N- and C-terminal cytoplasmic domains. The melastatin subfamily (TRPM) channels have N-terminal domains of approximately 700 amino acids with four regions of shared homology and C-terminal domains containing the conserved TRP domain followed by a coiled-coil region. Here we investigated the effects of N- and C-terminal deletions on the cold and menthol receptor, TRPM8, expressed heterologously in Sf21 insect cells. Patch-clamp electrophysiology was used to study channel activity and revealed that only deletion of the first 39 amino acids was tolerated by the channel. Further N-terminal truncation or any C-terminal deletions prevented proper TRPM8 function. Confocal microscopy with immunofluorescence revealed that amino acids 40-86 are required for localization to the plasma membrane. Furthermore, analysis of deletion mutant oligomerization shows that the transmembrane domain is sufficient for TPRM8 assembly into tetramers. TRPM8 channels with C-terminal deletions tetramerize and localize properly but are inactive, indicating that although not essential for tetramerization and localization, the C terminus is critical for proper function of the channel sensor and/or gate.  相似文献   

5.
Gite S  Li Y  Ramesh V  RajBhandary UL 《Biochemistry》2000,39(9):2218-2226
The formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria. We are studying the molecular mechanisms of recognition of the initiator tRNA by Escherichia coli MTF. MTF from eubacteria contains an approximately 100-amino acid C-terminal extension that is not found in the E. coli glycinamide ribonucleotide formyltransferase, which, like MTF, use N(10)-formyltetrahydrofolate as a formyl group donor. This C-terminal extension, which forms a distinct structural domain, is attached to the N-terminal domain through a linker region. Here, we describe the effect of (i) substitution mutations on some nineteen basic, aromatic and other conserved amino acids in the linker region and in the C-terminal domain of MTF and (ii) deletion mutations from the C-terminus on enzyme activity. We show that the positive charge on two of the lysine residues in the linker region leading to the C-terminal domain are important for enzyme activity. Mutation of some of the basic amino acids in the C-terminal domain to alanine has mostly small effects on the kinetic parameters, whereas mutation to glutamic acid has large effects. However, the deletion of 18, 20, or 80 amino acids from the C-terminus has very large effects on enzyme activity. Overall, our results support the notion that the basic amino acid residues in the C-terminal domain provide a positively charged channel that is used for the nonspecific binding of tRNA, whereas some of the amino acids in the linker region play an important role in activity of MTF.  相似文献   

6.
During nucleotide excision repair, one of the two incisions necessary for removal of a broad spectrum of DNA adducts is made by the human XPF/ERCC1 protein complex. To characterize the biochemical function of XPF, we have expressed and purified the independent 104 kDa recombinant XPF protein from E. coli and determined that it is an endonuclease and can bind DNA in the absence of the ERCC1 subunit. Endonuclease activity was also identified in a stable 70 kDa proteolysis fragment of XPF obtained during protein expression, indicating an N-terminal catalytic domain. Sequence homology and secondary structure predictions indicated a second functional domain at the C-terminus of XPF. To investigate the significance of the two predicted domains, a series of XPF deletion fragments spanning the entire protein were designed and examined for DNA binding, endonuclease activity, and ERCC1 subunit binding. Our results indicate that the N-terminal 378 amino acids of XPF are capable of binding and hydrolyzing DNA, while the C-terminal 214 residues are capable of binding specifically to ERCC1. We propose that the N-terminal domain of XPF contributes to the junction-specific endonuclease activity observed during DNA repair and recombination events. In addition, evidence presented here suggests that the C-terminal domain of XPF is responsible for XPF/ERCC1 complex formation. A working model for the XPF protein is presented illustrating the function of XPF in the nucleotide excision pathway and depicting the two functional domains interacting with DNA and ERCC1.  相似文献   

7.
8.
9.
We have determined the amino acid sequence of a small copper protein isolated from cucumber peelings. This cupredoxin contains 137 amino acids including a pyroglutamate as the first residue. The N-terminal 110 amino acid-long domain shows 30-37% identity to 2 other cupredoxins, stellacyanin and cucumber basic blue protein. A unique feature of this protein is a 27 amino acid-long C-terminal domain rich in 4-hydroxyproline and serine and resembling certain plant cell wall proteins. The prolines in this domain are hydroxylated to a different extent depending on the surrounding sequence.  相似文献   

10.
11.
Perrino FW  Harvey S  McNeill SM 《Biochemistry》1999,38(48):16001-16009
The epsilon subunit is the 3'-->5' proofreading exonuclease that associates with the alpha and theta subunits in the E. coli DNA polymerase III. Two fragments of the epsilon protein were prepared, and binding of these epsilon fragments with alpha and theta was investigated using gel filtration chromatography and exonuclease stimulation assays. The N-terminal fragment of epsilon, containing amino acids 2-186 (epsilon186), is a relatively protease-resistant core domain of the exonuclease. The purified recombinant epsilon186 protein catalyzes the cleavage of 3' terminal nucleotides, demonstrating that the exonuclease domain of epsilon is present in the N-terminal region of the protein. The absence of the C-terminal 57 amino acids of epsilon in the epsilon186 protein reduces the binding affinity of epsilon186 for alpha by at least 400-fold relative to the binding affinity of epsilon for alpha. In addition, stimulation of the epsilon186 exonuclease by alpha using a partial duplex DNA is about 50-fold lower than stimulation of the epsilon exonuclease by alpha. These results indicate that the C-terminal region of epsilon is required in the epsilonalpha association. To directly demonstrate that the C-terminal region of epsilon contains the alpha-association domain fusion protein, constructs containing the maltose-binding protein (MBP) and fragments of the C-terminal region of epsilon were prepared. Gel filtration analysis demonstrates that the alpha-association domain of epsilon is contained within the C-terminal 40 amino acids of epsilon. Also, the epsilon186 protein forms a tight complex with theta, demonstrating that the association of theta with epsilon is localized to the N-terminal region of epsilon. Association of epsilon186 and theta is further supported by the stimulation of the epsilon186 exonuclease in the presence of theta. These data support the concept that epsilon contains a catalytic domain located within the N-terminal region and an alpha-association domain located within the C-terminal region of the protein.  相似文献   

12.
13.
植物NAC转录因子的结构功能及其表达调控研究进展   总被引:8,自引:0,他引:8  
NAC转录因子是近十年来新发现的具有多种生物功能的植物特异转录因子。该家族转录因子的共同特点是其N端为保守的大约150个氨基酸的NAC结构域,C端为高度变异的转录调控区。它们在植物生长发育、激素调节和抵抗逆境等方面发挥着重要的作用。本文主要就植物NAC转录因子的基本结构特征、生物学功能、表达调控及其最新研究进展进行综述。  相似文献   

14.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

15.
It has previously been established that sequences at the C termini of polypeptide substrates are critical for efficient hydrolysis by the ClpP/ClpX ATP-dependent protease. We report for the bacteriophage lambda O replication protein, however, that N-terminal sequences play the most critical role in facilitating proteolysis by ClpP/ClpX. The N-terminal portion of lambda O is degraded at a rate comparable with that of wild type O protein, whereas the C-terminal domain of O is hydrolyzed at least 10-fold more slowly. Consistent with these results, deletion of the first 18 amino acids of lambda O blocks degradation of the N-terminal domain, whereas proteolysis of the O C-terminal domain is only slightly diminished as a result of deletion of the C-terminal 15 amino acids. We demonstrate that ClpX retains its capacity to bind to the N-terminal domain following removal of the first 18 amino acids of O. However, ClpX cannot efficiently promote the ATP-dependent binding of this truncated O polypeptide to ClpP, the catalytic subunit of the ClpP/ClpX protease. Based on our results with lambda O protein, we suggest that two distinct structural elements may be required in substrate polypeptides to enable efficient hydrolysis by the ClpP/ClpX protease: (i) a ClpX-binding site, which may be located remotely from substrate termini, and (ii) a proper N- or C-terminal sequence, whose exposure on the substrate surface may be induced by the binding of ClpX.  相似文献   

16.
One of the chitinase genes of Alteromonas sp. strain O-7, the chitinase C-encoding gene (chiC), was cloned, and the nucleotide sequence was determined. An open reading frame coded for a protein of 430 amino acids with a predicted molecular mass of 46,680 Da. Alignment of the deduced amino acid sequence demonstrated that ChiC contained three functional domains, the N-terminal domain, a fibronectin type III-like domain, and a catalytic domain. The N-terminal domain (59 amino acids) was similar to that found in the C-terminal extension of ChiA (50 amino acids) of this strain and furthermore showed significant sequence homology to the regions found in several chitinases and cellulases. Thus, to evaluate the role of the domain, we constructed the hybrid gene that directs the synthesis of the fusion protein with glutathione S-transferase activity. Both the fusion protein and the N-terminal domain itself bound to chitin, indicating that the N-terminal domain of ChiC constitutes an independent chitin-binding domain.  相似文献   

17.
Colandene JD  Topal MD 《Biochemistry》2000,39(45):13703-13707
NaeI is a type IIe endonuclease that interacts with two DNA recognition sequences to cleave DNA. One DNA sequence serves as a substrate and the other serves to activate cleavage. NaeI is divided into two domains whose structures parallel the two functionalities recognized in NaeI, endonuclease and topoisomerase. In this study, we report evidence for mutations that break interdomain functional communication in a NaeI-DNA complex. Deletion of the initial 124 amino acids of the N-terminal domain of NaeI converted NaeI to a monomer, consistent with self-association being mediated by the Endo domain. Deletions within a small region of the C-terminal DNA binding domain of NaeI (amino acids 182-192) altered the recognition by NaeI of sequences flanking the NaeI recognition sequence. Substituting Ala for Arg182 within this region had no apparent effect on DNA binding but greatly reduced the extent of DNA cleavage even though it is not part of the catalytic Endo domain. Substituting Ala for Ile185 reduced the extent of DNA binding about 1000-fold. Substituting Ala for Lys189 altered flanking sequence recognition. Residues 182-192 are away from the Endo domain responsible for cleavage and also face away from the modeled DNA binding faces of the apoprotein crystal structure. We propose that residues 182-192 are part of a web that mediates the flow of information between the NaeI Endo and Topo domains.  相似文献   

18.
19.
ParB is one of two P1-encoded proteins that are required for active partition of the P1 prophage in Escherichia coli. To probe the native domain structure of ParB, we performed limited proteolytic digestions of full-length ParB, as well as of several N-terminal and C-terminal deletion fragments of ParB. The C-terminal 140 amino acids of ParB form a very trypsin-resistant domain. In contrast, the N terminus is more susceptible to proteolysis, suggesting that it forms a less stably folded domain or domains. Because native ParB is a dimer in solution, we analyzed the ability of ParB fragments to dimerize, using both the yeast two-hybrid system and in vitro chemical cross-linking of purified proteins. These studies revealed that the C-terminal 59 amino acids of ParB, a region within the protease-resistant domain, are sufficient for dimerization. Cross-linking and yeast two-hybrid experiments also revealed the presence of a second self-association domain within the N-terminal half of ParB. The cross-linking data also suggest that the C terminus is inhibitory to multimerization through the N-terminal domain in vitro. We propose that the two multimerization domains play distinct roles in partition complex formation.  相似文献   

20.
The X-ray crystallographic structure of tyrosyl-tRNA synthetase (TyrTS) comprises only the N-terminal 320 amino acids of the molecule as the C-terminal 99 amino acids are poorly ordered in the crystal. A new technique, employing a single-stranded M13 splint, has been used to direct a deletion in the cloned gene of TyrTS so as to remove the disordered C-terminal region. We find that the truncated enzyme catalyses the formation of tyrosyl adenylate with unchanged Kcat and Km values and the crystallographic model must therefore include all the binding and catalytic residues involved in tyrosine activation. However, the truncated enzyme no longer binds tRNATyr or transfers tyrosine to tRNATyr. This indicates that the structural division of TyrTS is equally a functional one: the N-terminal structural domain catalyses tyrosine activation while the disordered C-terminal domain carries major determinants in tRNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号