首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Emori  M Takagi  B Maruo    K Yano 《Journal of bacteriology》1990,172(9):4901-4908
An alpha-amylase gene of Bacillus subtilis (natto) IAM1212 was cloned in a lambda EMBL3 bacteriophage vector, and the nucleotide sequence was determined. An open reading frame encoding the alpha-amylase (AMY1212) consists of 1,431 base pairs and contains 477 amino acid residues, which is the same in size as the alpha-amylase (AMY2633) of B. subtilis 2633, an alpha-amylase-hyperproducing strain, and smaller than that of B. subtilis 168, Marburg strain. The amino acid sequence of AMY1212 is different from that of AMY2633 at five residues. Enzymatic properties of these two alpha-amylases were examined by introducing the cloned genes into an alpha-amylase-deficient strain, B. subtilis M15. It was revealed that products of soluble starch hydrolyzed by AMY1212 are maltose and maltotriose, while those of AMY2633 are glucose and maltose. From the detailed analyses with oligosaccharides as substrates, it was concluded that the difference in hydrolysis products of the two similar alpha-amylases should be ascribed to the different activity hydrolyzing low-molecular-weight substrates, especially maltotriose; AMY1212 slowly hydrolyzes maltotetraose and cannot hydrolyze maltotriose, while AMY2633 efficiently hydrolyzes maltotetraose and maltotriose. Further analyses with chimeric alpha-amylase molecules constructed from the cloned genes revealed that only one amino acid substitution is responsible for the differences in hydrolysis products.  相似文献   

2.
alpha-Amylase was purified to apparent homogeneity from normal pancreas and a transplantable pancreatic acinar carcinoma of the rat by affinity chromatography on alpha-glucohydrolase inhibitor (alpha-GHI) bound to aminohexyl-Sepharose 4B. Recovery was 95-100% for both pancreas and tumour alpha-amylases. They were monomeric proteins, with Mr approx. 54000 on SDS/polyacrylamide-gel electrophoresis. Isoelectric focusing of both normal and tumour alpha-amylases resolved each into two major isoenzymes, with pI 8.3 and 8.7. Tumour-derived alpha-amylase contained two additional minor isoenzymes, with pI 7.6 and 6.95 respectively. All four tumour isoenzymes demonstrated amylolytic activity when isoelectric-focused gels were treated with starch and stained with iodine. Two-dimensional electrophoresis, on SDS/10-20%-polyacrylamide-gradient gels after isoelectric focusing, separated each major isoenzyme into doublets of similar Mr values. Pancreatic and tumour-derived alpha-amylases had similar Km and Ki (alpha-GHI) values, but the specific activity of the tumour alpha-amylase was approximately two-thirds that of the normal alpha-amylase. Although amino acid analysis and peptide mapping with the use of CNBr, N-chlorosuccinimide or Staphylococcus aureus V8 proteinase gave comparable profiles for the two alpha-amylases, tryptic-digest fingerprint patterns were different. Antibodies raised against the purified pancreatic alpha-amylase and tumour alpha-amylase respectively showed only one positive band on immunoblotting after gel electrophoresis of crude extracts of rat pancreas and carcinoma, at the same position as that of the purified enzyme. More than 95% of the alpha-amylase activity in the pancreas and in the tumour was absorbed by an excess amount of either antibody, indicating that normal and tumour alpha-amylases are immunologically identical. The presence of additional isoenzymes in the carcinoma, and dissimilarity of tryptic-digest patterns, may reflect an alteration in gene expression or in the post-translational modification of this protein in this heterogeneously differentiated transplantable pancreatic acinar carcinoma.  相似文献   

3.
4.
The rate of alpha-amylase (EC 3.2.1.1) synthesis in Bacillus subtilis is regulated by a gene, amyR, located near a structural gene, amyE, for the enzyme. To construct a fine map of the amyR-amyE region, we isolated 28 mutants defective in alpha-amylase activity. Eleven mutants out of 28 showed no alpha-amylase activity, whereas the other 17 showed less alpha-amylase activity than the parent. Out of 17 partially positive alpha-amylase mutants, 10 produced temperature-sensitive enzymes, and 4 produced immunologically altered enzymes, two of which are concurrently temperature-sensitive, and 5 produced smaller amounts of alpha-amylases which are indistinguishable from normal enzyme in their temperature sensitivity and immunological properties. Two out of 11 alpha-amylase-negative mutants produced material that cross-reacted with anti-amylase serum, and 3 mutants carried suppressible mutations by the suppressor described by Okubo. Mapping data indicate that all 28 mutation sites are located in the amyE region, and none of the groups of the mutants mentioned above contains lesions that are clustered in a single region of amyE. The amyR gene seems most likely to adjoin the terminal region of amyE.  相似文献   

5.
Zabrotes subfasciatus is a devastating starch-dependent storage bean pest. In this study, we attempted to identify novel alpha-amylase inhibitors from wild bean seeds, with efficiency toward pest alpha-amylases. An inhibitor named Phaseolus vulgaris chitinolytic alpha-amylase inhibitor (PvCAI) was purified and mass spectrometry analyses showed a protein with 33330 Da with the ability to form dimers. Purified PvCAI showed significant inhibitory activity against larval Z. subfasciatus alpha-amylases with no activity against mammalian enzymes. N-terminal sequence analyses showed an unexpected high identity to plant chitinases from the glycoside hydrolase family 18. Furthermore, their chitinolytic activity was also detected. Our data provides compelling evidence that PvCAI also possessed chitinolytic activity, indicating the emergence of a novel alpha-amylase inhibitor class.  相似文献   

6.
A total of 59 bacteria samples from Antarctic sea water were collected and screened for their ability to produce alpha-amylase. The highest activity was recorded from an isolate identified as an Alteromonas species. The purified alpha-amylase shows a molecular mass of about 50,000 Da and a pI of 5.2. The enzyme is stable from pH 7.5 to 9 and has a maximal activity at pH 7.5. Compared with other alpha-amylases from mesophiles and thermophiles, the "cold enzyme" displays a higher activity at low temperature and a lower stability at high temperature. The psychrophilic alpha-amylase requires both Cl- and Ca2+ for its amylolytic activity. Br- is also quite efficient as an allosteric effector. The comparison of the amino acid composition with those of other alpha-amylases from various organisms shows that the cold alpha-amylase has the lowest content in Arg and Pro residues. This could be involved in the principle used by the psychrophilic enzyme to adapt its molecular structure to the low temperature of the environment.  相似文献   

7.
Yoon SH  Robyt JF 《Carbohydrate research》2003,338(19):1969-1980
Acarbose analogues, 4IV-maltohexaosyl acarbose (G6-Aca) and 4IV-maltododecaosyl acarbose (G12-Aca), were prepared by the reaction of cyclomaltodextrin glucanyltransferase with cyclomaltohexaose and acarbose. The inhibition kinetics of acarbose and the two acarbose analogues were studied for four different alpha-amylases: Aspergillus oryzae, Bacillus amyloliquefaciens, human salivary, and porcine pancreatic alpha-amylases. The three inhibitors showed mixed, noncompetitive inhibition, for all four alpha-amylases. The acarbose inhibition constants, Ki, for the four alpha-amylases were 270, 13, 1.27, and 0.80 microM, respectively; the Ki values for G6-Aca were 33, 37, 14, and 7 nM, respectively; and the G12-Aca Ki constants were 59, 81, 18, and 11 nM, respectively. The G6-Aca and G12-Aca analogues are the most potent alpha-amylase inhibitors observed, with Ki values one to three orders of magnitude more potent than acarbose, which itself was one to three orders of magnitude more potent than other known alpha-amylase inhibitors.  相似文献   

8.
Insect pests and pathogens (fungi, bacteria and viruses) are responsible for severe crop losses. Insects feed directly on the plant tissues, while the pathogens lead to damage or death of the plant. Plants have evolved a certain degree of resistance through the production of defence compounds, which may be aproteic, e.g. antibiotics, alkaloids, terpenes, cyanogenic glucosides or proteic, e.g. chitinases, beta-1,3-glucanases, lectins, arcelins, vicilins, systemins and enzyme inhibitors. The enzyme inhibitors impede digestion through their action on insect gut digestive alpha-amylases and proteinases, which play a key role in the digestion of plant starch and proteins. The natural defences of crop plants may be improved through the use of transgenic technology. Current research in the area focuses particularly on weevils as these are highly dependent on starch for their energy supply. Six different alpha-amylase inhibitor classes, lectin-like, knottin-like, cereal-type, Kunitz-like, gamma-purothionin-like and thaumatin-like could be used in pest control. These classes of inhibitors show remarkable structural variety leading to different modes of inhibition and different specificity profiles against diverse alpha-amylases. Specificity of inhibition is an important issue as the introduced inhibitor must not adversely affect the plant's own alpha-amylases, nor the nutritional value of the crop. Of particular interest are some bifunctional inhibitors with additional favourable properties, such as proteinase inhibitory activity or chitinase activity. The area has benefited from the recent determination of many structures of alpha-amylases, inhibitors and complexes. These structures highlight the remarkable variety in structural modes of alpha-amylase inhibition. The continuing discovery of new classes of alpha-amylase inhibitor ensures that exciting discoveries remain to be made. In this review, we summarize existing knowledge of insect alpha-amylases, plant alpha-amylase inhibitors and their interaction. Positive results recently obtained for transgenic plants and future prospects in the area are reviewed.  相似文献   

9.
Plant alpha-amylase inhibitors show great potential as tools to engineer resistance of crop plants against pests. Their possible use is, however, complicated by observed variations in specificity of enzyme inhibition, even within closely related families of inhibitors. Five alpha-amylase inhibitors of the structural 0.19 family were isolated from wheat kernels, and assayed against three insect alpha-amylases and porcine pancreatic alpha-amylase, revealing several intriguing differences in inhibition profiles, even between proteins sharing sequence identity of up to 98%. Inhibition of the enzyme from a commercially important pest, the bean weevil Acanthoscelides obtectus, is observed for the first time. Using the crystal structure of an insect alpha-amylase in complex with a structurally related inhibitor, models were constructed and refined of insect and human alpha-amylases bound to 0.19 inhibitor. Four key questions posed by the differences in biochemical behaviour between the five inhibitors were successfully explained using these models. Residue size and charge, loop lengths, and the conformational effects of a Cys to Pro mutation, were among the factors responsible for observed differences in specificity. The improved structural understanding of the bases for the 0.19 structural family inhibitor specificity reported here may prove useful in the future for the rational design of inhibitors possessing altered inhibition characteristics.  相似文献   

10.
Four alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) inhibitors were isolated from an albumin fraction of wheat flour by ion-exchange and gel-filtration chromatography. The purified inhibitors were characterized according to their electrophoretic mobilities, molecular weights, carbohydrate, content, sulphydryl content, susceptibility to proteolytic digestion and specificities in inhibiting human salivary and pancreatic alpha-amylases. The properties of these inhibitors ae compared to similar proteins isolated by other workers.  相似文献   

11.
Extracellular alpha-amylases were isolated from the culture medium filtrates of Bacillus subtilis R-623 morphological variants R, P and S by means of biospecific chromatography on artificial sorbents and then purified to homogeneity. Some properties of purified alpha-amylases were being studied. The molecular weight of alpha-amylases from Bacillus subtilis variants R, P and S equals 57,000, 58,000 and 56,000, and the isoelectric points are at pH 5.4, 5.6 and 5.1, respectively. pH optimum for alpha-amylase from variants R and P is 4.5, and for that from variant S--5.0. alpha-Amylases from Bacillus subtilis R-623 morphological variants are thermostable enzymes. According to the properties studied, they correspond to Bacillus subtilis alpha-amylases that were isolated and described by other researchers.  相似文献   

12.
The alpha-amylases in the salivary glands of Lygus hesperus Knight and L. lineolaris (Palisot de Beauvois) were isolated and purified by ion exchange chromatography, and by isoelectric focusing, respectively. The alpha-amylase from L. hesperus had an isoelectric point (pI) of 6.25, and a pH optimum of 6.5. The specific activity of alpha-amylases in the salivary glands of L. hesperus was 1.2 U/mg/ml. The alpha-amylase from L. lineolaris had a pI of 6.54, and a pH optimum of 6.5. The specific activity of alpha-amylase from L. lineolaris was 1.7 U/mg/ml. The activity of alpha-amylase in both species was significantly inhibited by alpha-amylase inhibitor from wheat and also by EDTA and SDS. Sodium chloride enhanced alpha-amylase activity for both species. The enzyme characteristics and relative activities are discussed in the context of differences phytophagous versus zoophagous habits in these two congeneric species.  相似文献   

13.
The primary structure and proteolytic processing of the alpha-amylase isoinhibitor alpha AI-1 from common bean (Phaseolus vulgaris cv. Magna) was determined by protein chemistry techniques. The inhibitory specificity of alphaAI-1 was screened with a panel of the digestive alpha-amylases from 30 species of insects, mites, gastropod, annelid worm, nematode and fungal phytopathogens with a focus on agricultural pests and important model species. This in vitro analysis showed a selective inhibition of alpha-amylases from three orders of insect (Coleoptera, Hymenoptera and Diptera) and an inhibition of alpha-amylases of the annelid worm. The inhibitory potential of alphaAI-1 against several alpha-amylases was found to be modulated by pH. To understand how alphaAI-1 discriminates among closely related alpha-amylases, the sequences of the alpha-amylases sensitive, respectively, insensitive to alphaAI-1 were compared, and the critical determinants were localized on the spatial alpha-amylase model. Based on the in vitro analysis of the inhibitory specificity of alphaAI-1, the in vivo activity of the ingested alphaAI-1 was demonstrated by suppression of the development of the insect larvae that expressed the sensitive digestive alpha-amylases. The first comprehensive mapping of alphaAI-1 specificity significantly broadens the spectrum of targets that can be regulated by alpha-amylase inhibitors of plant origin, and points to potential application of these protein insecticides in plant biotechnologies.  相似文献   

14.
15.
The Arabidopsis thaliana genome encodes three alpha-amylase-like proteins (AtAMY1, AtAMY2, and AtAMY3). Only AtAMY3 has a predicted N-terminal transit peptide for plastidial localization. AtAMY3 is an unusually large alpha-amylase (93.5 kDa) with the C-terminal half showing similarity to other known alpha-amylases. When expressed in Escherichia coli, both the whole AtAMY3 protein and the C-terminal half alone show alpha-amylase activity. We show that AtAMY3 is localized in chloroplasts. The starch-excess mutant of Arabidopsis sex4, previously shown to have reduced plastidial alpha-amylase activity, is deficient in AtAMY3 protein. Unexpectedly, T-DNA knock-out mutants of AtAMY3 have the same diurnal pattern of transitory starch metabolism as the wild type. These results show that AtAMY3 is not required for transitory starch breakdown and that the starch-excess phenotype of the sex4 mutant is not caused simply by deficiency of AtAMY3 protein. Knock-out mutants in the predicted non-plastidial alpha-amylases AtAMY1 and AtAMY2 were also isolated, and these displayed normal starch breakdown in the dark as expected for extraplastidial amylases. Furthermore, all three AtAMY double knock-out mutant combinations and the triple knock-out degraded their leaf starch normally. We conclude that alpha-amylase is not necessary for transitory starch breakdown in Arabidopsis leaves.  相似文献   

16.
Chloride-activated alpha-amylases contain a noncatalytic triad, independent of the glycosidic active site, perfectly mimicking the catalytic triad of serine-proteases and of other active serine hydrolytic enzymes. Mutagenesis of Glu, His, and Ser residues in various alpha-amylases shows that this pattern is a structural determinant of the enzyme conformation that cannot be altered without losing the intrinsic stability of the protein. (1)H-(15)N NMR spectra of a bacterial alpha-amylase reveal proton signals that are identical with the NMR signature of catalytic triads and especially a deshielded proton involving a protonated histidine and displaying properties similar to that of a low barrier hydrogen bond. It is proposed that the H-bond between His and Glu of the noncatalytic triad is an unusually strong interaction, responsible for the observed NMR signal and for the weak stability of the triad mutants. Furthermore, a stringent template-based search of the Protein Data Bank demonstrated that this motif is not restricted to alpha-amylases, but is also found in 80 structures from 33 different proteins, amongst which SH2 domain-containing proteins are the best representatives.  相似文献   

17.
The crude extracts of alpha-amylases when mixed with alginate, tert-butyl alcohol, and ammonium sulfate resulted in an interfacial precipitate containing polymer-bound amylase. The precipitate was dissolved in 1 M maltose to recover alpha-amylase activity. The recovery of alpha-amylases were 74%, 77%, and 92% in the case of Bacillus amyloliquefaciens, wheat germ, and porcine pancreas, respectively. All purified preparations showed a single band on SDS-PAGE.  相似文献   

18.
Two proteinaceous alpha-amylase inhibitors termed alphaAI-Pa1 and alphaAI-Pa2 were purified from seeds of a cultivated tepary bean (Phaseolus acutifolius A. Gray, cv. PI311897). The two inhibitors differed in their specificity towards alpha-amylases of insect pests such as bruchids, although neither showed any inhibitory activity against alpha-amylases of mammalian, bacterial or fungal origin. AlphaAI-Pa2 resembles two common bean inhibitors, alphaAI-1 and alphaAI-2, in several characteristics such as N-terminal amino acid sequences and oligomeric structure being composed of alpha and beta subunits. In contrast alphaAI-Pa1 is composed of a single glycopolypeptide with a molecular mass of 35 kDa, and its N-terminal amino acid sequence resembled that of seed lectins in tepary bean and common bean. The information on the two tepary bean alpha-amylase inhibitors may be useful not only for providing insight into critical structure for the specificity towards different alpha-amylase enzymes but also for enhancing insect resistance in crops.  相似文献   

19.
BACKGROUND: alpha-Amylases constitute a family of enzymes that catalyze the hydrolysis of alpha-D-(1,4)-glucan linkages in starch and related polysaccharides. The Amaranth alpha-amylase inhibitor (AAI) specifically inhibits alpha-amylases from insects, but not from mammalian sources. AAI is the smallest proteinaceous alpha-amylase inhibitor described so far and has no known homologs in the sequence databases. Its mode of inhibition of alpha-amylases was unknown until now. RESULTS: The crystal structure of yellow meal worm alpha-amylase (TMA) in complex with AAI was determined at 2.0 A resolution. The overall fold of AAI, its three-stranded twisted beta sheet and the topology of its disulfide bonds identify it as a knottin-like protein. The inhibitor binds into the active-site groove of TMA, blocking the central four sugar-binding subsites. Residues from two AAI segments target the active-site residues of TMA. A comparison of the TMA-AAI complex with a modeled complex between porcine pancreatic alpha-amylase (PPA) and AAI identified six hydrogen bonds that can be formed only in the TMA-AAI complex. CONCLUSIONS: The binding of AAI to TMA presents a new inhibition mode for alpha-amylases. Due to its unique specificity towards insect alpha-amylases, AAI might represent a valuable tool for protecting crop plants from predatory insects. The close structural homology between AAI and 'knottins' opens new perspectives for the engineering of various novel activities onto the small scaffold of this group of proteins.  相似文献   

20.
M Weber  M J Foglietti  F Percheron 《Biochimie》1976,58(11-12):1299-1302
Affinity chromatography on cross-linked starch affords a simple and rapid procedure for alpha-amylases (EC 3.2.1.1.) purification. When starch is cross-linked in alkaline medium by epichlorhydrin in the conditions described, the insoluble polysaccharide obtained is able to retain specifically the alpha-amylase which is then eluted with 2M maltose solution. alpha-amylase can be obtained in a pure form with a 60% yield. The exoenzyme beta-amylase (EC 3.2.1.2) is not retained by the support and is eluted with other contaminant proteins. Therefore, this procedure allows the separation of the endo- and exoamylase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号