首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
恶性肿瘤是严重威胁人类健康和社会发展的疾病。传统的肿瘤治疗方法如手术、放疗、化疗和靶向治疗等不能完全满足临床治疗的需求,新兴的免疫治疗成为了肿瘤治疗领域的研究热点。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)作为一种肿瘤免疫治疗方法,已获批用于治疗多种肿瘤,如肺癌、肝癌、胃癌和结直肠癌等。然而,ICIs在临床使用过程中,只有少数患者会出现持久反应,一些患者还会出现耐药和不良反应。因此,预测生物标志物的鉴定和开发对提高ICIs的治疗效果至关重要。肿瘤ICIs预测生物标志物主要包括肿瘤生物标志物、肿瘤微环境生物标志物、循环相关生物标志物、宿主环境生物标志物以及组合生物标志物等,对患者筛查、个体化治疗和预后评估具有重要意义。本文就肿瘤ICIs治疗预测生物标志物的前沿进展作一综述。  相似文献   

2.
Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.  相似文献   

3.
胃癌是目前世界上发病率及致死率较高的恶性肿瘤之一,在东亚地区尤其显著。针对胃癌的治疗手段仍是传统的手术联合化疗、放疗为主,尽管靶向药物治疗提供了新的选择,但其对晚期胃癌的疗效仍然有限。胃癌的免疫治疗作为独特的治疗手段,在近十多年发展较为活跃,特别是过继性免疫治疗手段不断有创新。过继性免疫治疗主要依赖回输具有抗肿瘤活性的细胞,目前回输的细胞由具有非特异性抗肿瘤作用向具有特异性抗肿瘤作用演变,特别是嵌合性抗原T细胞治疗的出现,为进展期胃癌患者提供了有一种潜在的选择。本文对胃癌过继性免疫治疗中采用的不同免疫活性细胞的作用机制、临床应用等进行总结,并针对其不足提出利用基因工程技术增强治疗靶向性、降低免疫逃逸的研究方向。  相似文献   

4.
Combinational therapy has improved the cancer therapeutic landscape but is associated with a concomitant increase in adverse side reactions. Emerging evidence proposes that targeting one core target with multiple critical roles in tumors can achieve combined anti-tumor effects. This review focuses on NEK2, a member of serine/threonine kinases, with broad sequence identity to the mitotic regulator NIMA of the filamentous fungus Aspergillus nidulans. Elevated expression of NEK2 was initially found to promote tumorigeneses through abnormal regulation of the cell cycle. Subsequent studies report that NEK2 is overexpressed in a broad spectrum of tumor types and is associated with tumor progression and therapeutic resistance. Intriguingly, NEK2 has recently been revealed to mediate tumor immune escape by stabilizing the expression of PD-L1. Targeting NEK2 is thus becoming a promising approach for cancer treatment by orchestrating chemoradiotherapy, targeted therapy, and immunotherapy. It represents a novel strategy for inducing combined anti-cancer effects using a mono-agent.  相似文献   

5.
ABSTRACT

Collagen is the most abundant component of tumor extracellular matrix (ECM). ECM collagens are known to directly interact with the tumor cells via cell surface receptor and play crucial role in tumor cell survival and promote tumor progression. Collagen receptor DDR1 is a member of receptor tyrosine kinase (RTK) family with a unique motif in the extracellular domain resembling Dictyostelium discoideum protein discoidin-I. DDR1 displays delayed and sustained activation upon interaction with collagen and recent findings have demonstrated that DDR1-collagen signaling play important role in cancer progression. In this review, we discuss the current knowledge on the role of DDR1 in cancer metastasis and possibility of a potential therapeutic approach of DDR1 targeted therapy in cancer.  相似文献   

6.
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.  相似文献   

7.
In this article we report about the role that tumor structure and extracellular matrix (ECM) may play in immunotherapy and in gene therapy using adenoviruses. We performed studies in a rat model for colorectal cancer, CC531, and in specimens of human colorectal cancer. The tumors were composed of two compartments, tumor cell nests surrounded by stromal cells. ECM proteins were expressed in the stromal part, where the blood vessels were also located. Furthermore, in several tumors, the tumor cell nests were surrounded by basal membrane-like structures. Therefore, in vascular approaches to treat cancer, therapeutic agents on their route to tumor cells may be hampered by ECM to reach tumor cells. We found that immune cells were abundantly present in tumors from colorectal origin. These cells were, however, not found in direct contact with tumor cells, but mainly in the stromal part of the tumor. Adenoviruses, when intravascularly injected, did not reach tumor cells in the CC531 rat model. Tumor cells were only infected, and even then in limited numbers, in cases of intratumoral injection. We hypothesize that ECM in a tumor is a barrier both for immune cells and for adenoviruses to make direct contact with these tumor cells, and thus limits colorectal tumor therapy.  相似文献   

8.
Xia D  Moyana T  Xiang J 《Cell research》2006,16(3):241-259
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.  相似文献   

9.
双特异性抗体(Bispecific antibody,BsAb)是具有两个不同抗原结合位点的抗体,可分为含Fc段和不含Fc段的BsAb,不同结构的BsAb具有不同的特点和应用领域。相比于传统的单克隆抗体,BsAb的灵敏度和特异性更高。更重要的是,BsAb具有募集免疫细胞、双重阻断信号通路等功能,在免疫诊断和治疗中扮演重要角色。随着全球环境的恶化以及人们生活习惯的不规律,肿瘤的发病率越来越高,成为仅次于心脑血管疾病的全球第二大致死疾病,全球每年有1200万新发癌症病例。肿瘤的治疗手段包括手术切除、放化疗和靶向治疗等。肿瘤免疫疗法是近几年新兴的治疗方法,其通过激发自身免疫系统的能力来清除肿瘤细胞。传统的单抗药物虽在肿瘤靶向治疗和免疫治疗中取得了一定的疗效,但肿瘤具有高度的异质性和可塑性,常常引发肿瘤耐药性的出现。双特异性抗体能够同时靶向多个靶点,目前已用于肿瘤的临床治疗,并取得了一定的治疗效果。文中就双特异性抗体在肿瘤临床治疗中的研究进展和应用作一综述。  相似文献   

10.
11.
肿瘤是21世纪威胁人类健康的主要疾患之一。临床上,实体瘤治疗仍以手术切除、放化疗和靶向治疗为主,但这些方法往往不能根除肿瘤病灶,易导致肿瘤复发和进展。肿瘤免疫治疗是利用人体的免疫系统,通过增强或恢复抗肿瘤免疫力实现控制和杀伤肿瘤的一种新的治疗模式。肿瘤免疫治疗能够在众多患者中产生持久反应,过继性免疫治疗和免疫检查点阻断剂治疗均可产生显著的抗原特异性免疫反应。肿瘤浸润淋巴细胞(TILs)是一种存在于肿瘤组织内部具有高度异质性的淋巴细胞,在宿主抗原特异性肿瘤免疫应答中发挥关键作用。最新研究表明,在肿瘤发生和治疗过程中,TILs的亚群组成和数量与患者预后密切相关;抗肿瘤的TILs介导的过继性免疫治疗方法已在多种实体瘤中取得了良好的疗效。文中就实体肿瘤中TILs的研究进展作一综述。  相似文献   

12.
Cancer stem cells (CSC) represent malignant cell subsets in hierarchically organized tumors, which are selectively capable of tumor initiation and self‐renewal and give rise to bulk populations of non‐tumorigenic cancer cell progeny through differentiation. Robust evidence for the existence of prospectively identifiable CSC among cancer bulk populations has been generated using marker‐specific genetic lineage tracking of molecularly defined cancer subpopulations in competitive tumor development models. Moreover, novel mechanisms and relationships have been discovered that link CSC to cancer therapeutic resistance and clinical tumor progression. Importantly, proof‐of‐principle for the potential therapeutic utility of the CSC concept has recently been provided by demonstrating that selective killing of CSC through a prospective molecular marker can inhibit tumor growth. Herein, we review these novel and translationally relevant research developments and discuss potential strategies for CSC‐targeted therapy in the context of resistance mechanisms and molecular pathways preferentially operative in CSC.  相似文献   

13.
A detailed understanding of the biochemical pathways that are responsible for cancer initiation and maintenance is critical to designing targeted cancer therapy. Although we have accumulated knowledge about individual molecular changes that underlie cancer development, we are still learning how multiple biochemical pathways cooperate in cancer. This cooperation and cross-talk between redundant biochemical pathways appear to be the main reasons for the failure of therapeutic agents that are designed to interfere with a specific molecular target. In order to simulate the cooperation of several biochemical pathways in cancer development, we have engineered mouse ovarian cancer cell lines and tumors with different combinations of defined genetic alterations. We have used this system to determine the functional contributions of individual pathways that are necessary for cell proliferation and tumor maintenance, as well as to test the molecular mechanisms of tumor resistance to pathway-targeted therapy.  相似文献   

14.
15.
《Translational oncology》2020,13(3):100738
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.  相似文献   

16.
The application of adenoviral vectors in cancer gene therapy is hampered by low receptor expression on tumor cells and high receptor expression on normal epithelial cells. Targeting adenoviral vectors toward tumor cells may improve cancer gene therapy procedures by providing augmented tumor transduction and decreased toxicity to normal tissues. Targeting requires both the complete abolition of native tropism and the addition of a new specific binding ligand onto the viral capsid. Here we accomplished this by using doubly ablated adenoviral vectors, lacking coxsackievirus-adenovirus receptor and alpha(v) integrin binding capacities, together with bispecific single-chain antibodies targeted toward human epidermal growth factor receptor (EGFR) or the epithelial cell adhesion molecule. These vectors efficiently and selectively targeted both alternative receptors on the surface of human cancer cells. Targeted doubly ablated adenoviral vectors were also very efficient and specific with primary human tumor specimens. With primary glioma cell cultures, EGFR targeting augmented the median gene transfer efficiency of doubly ablated adenoviral vectors 123-fold. Moreover, EGFR-targeted doubly ablated vectors were selective for human brain tumors versus the surrounding normal brain tissue. They transduced organotypic glioma and meningioma spheroids with efficiencies similar to those of native adenoviral vectors, while exhibiting greater-than-10-fold-reduced background levels on normal brain explants from the same patients. As a result, EGFR-targeted doubly ablated adenoviral vectors had a 5- to 38-fold-improved tumor-to-normal brain targeting index compared to native vectors. Hence, single-chain targeted doubly ablated adenoviral vectors are promising tools for cancer gene therapy. They should provide an improved therapeutic index with efficient tumor transduction and effective protection of normal tissue.  相似文献   

17.
18.
越来越多的证据指出前体mRNA选择性剪切的调节在癌症病理生理学上的重要性.在非小细胞肺癌(NSCLC)的发生及发展中caspase-9 mRNA的选择性剪切发挥着重要作用,caspase-9的2个剪切异构体caspase-9a和caspase-9b的比值与NSCLC肿瘤的发生和维持密切相关,并且调节该比值关系会影响到NSCLC细胞对于抗癌治疗的敏感性.因此,caspase-9的选择性剪切是目前NSCLC治疗和诊断最受关注的焦点.本文就caspase-9的选择性剪切及其在NSCLC治疗中的应用展开综述.  相似文献   

19.
Genetic alterations are responsible for the development of cancer in ductal cells of the pancreas. These genetic changes result in abnormal molecular expression of proteins that are involved in cell proliferation, cell cycle control and adhesion. Some of the genetic mutations result in aberrant proteins that can be recognized as novel or foreign by cells of innate and adaptive immune systems. These are appropriate targets for therapeutic intervention which may involve immunobiologic approaches. These approaches may be less effective because of immune escape mechanisms developed by tumor cells within the microenvironment of the tumor mass. Immunobiotherapy intervention of pancreas cancer must circumvent these obstacles and integrate effective immunotherapy with molecularly targeted approaches to pancreas cancer intervention.  相似文献   

20.
Head and neck squamous cell cancer(HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells(CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号