首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
In the present work, a second gene encoding protein disulfide isomerase (PDI2) was cloned and characterized from Schizosaccharomyces pombe, and its regulation was studied. The structural gene encoding PDI2 was amplified from the genomic DNA using PCR, and ligated into the E. coli-yeast shuttle vector pRS316 to generate the recombinant plasmid pYPDI2. The determined DNA sequence carries 2,578 bp and is able to encode a protein of 726 amino acid sequence with CGAC at the putative active site. The fission yeast cells harboring pYPDI2 contained 1.62- and 2.73-fold higher PDI activity than the control yeast cells in exponential and stationary phases, respectively, indicating that the cloned gene is in vivo functioning. The PDI2 mRNA levels in both vector control and pYPDI2-containing yeast cells were found to be significantly higher in the stationary phase than in the exponential phase, suggesting that expression of the PDI2 gene is under stationary control. The yeast cells harboring pYPDI2 showed enhanced survival on minimal media plates containing nitric oxide (NO)-generating sodium nitroprusside (SNP) and no nitrogen. The synthesis of β-galactosidase from the PDI2-lacZ fusion gene was markedly enhanced in the Pap1-positive KP1 cells by SNP and nitrogen starvation. However, the enhancement in the synthesis of β-galactosidase from the PDI2-lacZ fusion gene by SNP and nitrogen starvation appeared to be relatively reduced in the Pap1-negative TP108-3C cells than in the Pap1-positive KP1 cells. The PDI2 mRNA level was elevated by SNP and nitrogen starvation in the Pap1-positive cells but not in the Pap1-negative cells. In brief, the S. pombe PDI2 plays a protective role against nitrosative and nutritional stresses, and is positively regulated by NO and nitrogen starvation in a Pap1-dependent manner.  相似文献   

8.
9.
10.
The structural gene encoding a third thioredoxin (Trx) homologue, TRX3, of the fission yeast Schizosaccharomyces pombe was characterized and its regulation was studied. The determined DNA sequence encoded a putative 290 amino acid sequence of Trx with a molecular mass of 31,889 Da. The TRX3 mRNA level was increased in S. pombe cells harboring plasmid pTRX3, suggesting that the cloned TRX3 gene was functional. Yeast cultures harbouring plasmid pTRX3 exhibited shorter generation times and higher survival on solid minimal media plates incorporating mercury chloride (0.01 mmol/L) or hydrogen peroxide (1 mmol/L) compared with control cultures. Yeast cells containing extra copies of TRX3, but not TRX1 and TRX2, gave rise to lower reactive oxygen species levels than control cells. Oxidative stress owing to hydrogen peroxide and menadione enhanced the synthesis of beta-galactosidase from the TRX3-lacZ fusion gene in Pap1-positive cells but not in Pap1-negative cells. The TRX3 mRNA level was increased by oxidative stress only in Pap1-positive cells. Basal expression of the TRX3 gene also depended on Pap1. We concluded that S. pombe TRX3 is linked with yeast growth and oxidative stress response, with its expression being regulated by oxidative stress in a Pap1-dependent manner.  相似文献   

11.
12.
Lim CJ  Cho YW  Sa JH  Lim HW  Kim HG  Kim SJ  Park EH 《Molecules and cells》2002,14(3):431-436
The genomic DNA encoding a second glutathione S-transferase (GSTII) was previously isolated from the fission yeast Schizosaccharomyces pombe. Its expression was shown to be induced by menadione, mercuric chloride, o-dinitrobenzene, and NO-generating S-nitroso-N-acetylpenicillamine using the GSTII-lacZ fusion harboring the 910 bp upstream region from the translational initiation point. In this study, the additional fusion plasmids pGST50-590 and pGST50-6R-590 were constructed to carry the 590 bp upstream region in the vectors YEp357 and YEp367R, respectively. The synthesis of beta-galactosidase from the fusion plasmid pGST50-590 was about 3-fold higher than that from the fusion plasmid pGST50-F, indicating the presence of negatively activating sequence in the -910 to approximately -590 region. It was also enhanced by the same agents, which induced the synthesis of beta-galactosidase from the fusion plasmid pGST50-F. The synthesis of beta-galactosidase from both fusion plasmids pGST50-F and pGST50-590 was enhanced by the overexpressed Pap1 protein. The synthesis of beta-galactosidase from the two YEp367R derivatives pGST50-6R-F and pGST50-6R-590 was greatly decreased in the Pap1-negative strain TP108-3C. These results propose the Pap1-dependent regulation of the GSTII gene from the fission yeast.  相似文献   

13.
Proteins containing the baculovirus inhibitor of apoptosis repeats (BIR domains) have been identified in a wide range of species. BIR domain containing proteins are thought to inhibit caspases and thereby cause inhibition of apoptosis. A BIR domain containing protein has been recently identified by the Schizosaccharomyces pombe genome sequencing project. However, caspase-like proteins have not been found in yeasts, suggesting that the BIR domain containing proteins might play a fundamental role in cell regulation, in addition to their well-characterized role in inhibition of apoptosis. In this study, we have characterized Pbh1p, an S. pombe BIR domain containing protein. Construction and analysis of a null mutant in pbh1+ revealed that pbh1+ is essential for cell viability. Moreover, cells devoid of Pbh1p are defective in chromosome condensation and chromosome segregation. Thus, proper chromosome segregation requires the function of Pbh1p. Over-production of Pbh1p led to abnormalities in mitosis and cytokinesis, suggesting that the levels of Pbh1p are important for regulation of mitosis and cytokinesis.  相似文献   

14.
A third gene encoding glutathione S-transferase (GSTIII) was cloned from the fission yeast Schizosaccharomyces pombe. The nucleotide sequence determined was found to contain 2110 base pairs including an open reading frame of 242 amino acids that would encode a protein of a molecular mass of 26,620 Da. The cloned GSTIII gene could be expressed in S. pombe, S. cerevisiae and Escherichia coli cells which gave 1.4-, 2.1-, and 3.0-fold higher GST activity in an assay using 1-chloro-2,4-dinitrobenzene as a substrate, respectively. The cloned GSTIII gene caused higher survivals of S. pombe cells on solid media with cadmium chloride or mercuric chloride. The GSTIII protein has 16% and 18% homologies with the GSTI and GSTII proteins, respectively. To independently monitor the regulation of the GSTIII gene, its 1168 bp upstream region and N-terminal 33 amino acid-coding region was fused into the promoterless beta-galactosidase gene of the shuttle vector YEp357. The synthesis of beta-galactosidase from the fusion plasmid pGY357 was greatly enhanced by cadmium chloride (50 microM), cupric chloride (10 microM), aluminum chloride (5 mM, 10 mM), mercuric chloride (1 microM), and zinc chloride (10 mM). However, the synthesis of beta-galactosidase from the fusion plasmid pGY357 was not affected by superoxide-generating menadione, and o-dinitrobenzene, whereas they could significantly induce the expression of the GSTI and GSTII genes of S. pombe. The overproduced Pap1 inhibited the induction of beta-galactosidase synthesis from the fusion plasmid pGY357 by cadmium chloride, which is opposite to the previously known role of Pap1 in the response to oxidative stress. Our results collectively indicate that the three GST genes of S. pombe are subjected to different regulatory mechanisms. The major role of the GSTIII protein in S. pombe may be the detoxification of various metals.  相似文献   

15.
16.
This work aims to elucidate the relationship between nitrogen depletion and Glutathione (GSH) level in Schizosaccharomyces pombe. The total GSH level was much higher in the Pap1-positive KP1 cells than in the Pap1-negative TP108-3C cells, suggesting that synthesis of GSH is dependent on Pap1. When the Pap1-positive KP1 cells were transferred to the nitrogen-depleted medium, total GSH level significantly increased up to 6 h and then slightly declined after 9 h. Elevation of the total GSH level was observed to be much less with the Pap1-negative cells. However, glucose deprivation was not able to enhance the GSH level in the KP1 cells. Activity of gamma-glutamyltranspeptidase (gamma-GT), an enzyme in the first step of GSH catabolism, also increased during nitrogen depletion. The total GSH level was more significantly enhanced in the KP1 cells overexpressing gamma-GT2 than gamma-GT1 during nitrogen starvation. Reactive oxygen species (ROS) levels were not changed during nitrogen starvation in both Pap1-positive and Pap1-negative cells. Collectively, nitrogen depletion causes up-regulation of GSH synthesis and gamma-GT in a Pap1-dependent manner.  相似文献   

17.
18.
The structural gene for the putative gamma-glutamyl transpeptidase (GGT) was isolated from the chromosomal DNA of the fission yeast Schizosaccharomyces pombe. The determined sequence contained 3324 bp and encoded the predicted 630 amino acid sequence of GGT, which resembles counterparts in Homo sapiens, Rattus norvegicus, Saccharomyces cerevisiae, and Escherichia coli. The S. pombe cells harboring the cloned GGT gene showed about twofold higher GGT activity in the exponential phase than the cells harboring the vector only, indicating that the cloned GGT gene was functional. To monitor the expression of the S. pombe GGT gene, we fused the fragment 1085 bp upstream of the cloned GGT gene into the promoterless beta-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pGT98. The synthesis of beta-galactosidase from the fusion plasmid in S. pombe cells was enhanced by treatments with NO-generating sodium nitroprusside (SN), L-buthionine-(S,R)-sulfoximine (BSO), and glycerol. The GGT mRNA level in the S. pombe cells was increased by SN and BSO. Involvement of Pap1 in the induction of the GGT gene by SN and BSO was observed.  相似文献   

19.
20.
Cho YW  Kim D  Park EH  Lim CJ 《Molecules and cells》2002,13(2):315-321
The genomic DNA encoding thioredoxin (TRX) was previously isolated from the fission yeast Schizosaccharomyces pombe. In this investigation, regulation of the S. pombe TRX gene was studied in lacZ translational fusions. The synthesis of beta-galactosidase from the fusion plasmid pYKT24 was significantly enhanced by treatments with cadmium chloride, zinc chloride, and high temperatures. Synthesis of beta-galactosidase from the fusion plasmid was significantly decreased by higher concentrations (5 microM, 10 microM) of mercuric chloride, whereas it was enhanced by its lower concentration (1 microM). Diamide affected the synthesis of beta-galactosidase in the same manner with mercuric chloride. However, high osmolarity had no effect on the beta-galactosidase synthesis from the fusion plasmid pYKT24. Various fusion plasmids were constructed to carry serially deleted upstream regions of the TRX gene. Pap1 mediates the regulation of the S. pombe TRX gene. The upstream region, between 987 and 1,270 bp from the translational initiation point, is responsible for the regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号