首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
After evidencing the great importance of plants for animals and humans in consequence of the photosynthesis, several considerations on plant evolution are made. One of the peculiar characteristics of the plant is the sessile property, due especially to the cell wall. This factor, principally, strengthened by the photosynthetic process, determined the particular developmental pattern of the plant, which is characterized by the continuous formation of new organs. The plant immobility, although negative for its survival, has been, in great part, overcome by the acquisition of the capacity of adaptation (plasticity) to the environmental stresses and changes, and the establishment of more adapted genotypes. This capacity to react to the external signals induced Trewavas to speak of "plant intelligence". The plant movement incapacity and the evolution of the sexual reproduction system were strongly correlated. In this context, the evolution of the flower in the Angiosperms has been particularly important to allow the male gamete to fertilize the immobile female gamete. Moreover, the formation of fruit and seed greatly improved the dispersal and conservation of the progeny in the environment. With the flower, mechanisms to favour the outcrossing among different individuals appeared, which are essential to increase the genetic variability and, then, the plant evolution itself. Although the Angiosperms seem highly evolved, the plant evolution is not surely finished, because many reported morpho-physiological processes may be still considered susceptible of further improvement. In the last years the relationships among humans, plants and environment are becoming closer and closer. This is due to the use of the DNA recombinant techniques with the aim to modify artificially plant characters. Therefore, the risk of a plant evolution strongly directed towards practical or commercial objectives, or "an artificial evolution", may be hypothesized.  相似文献   

2.
3.

Background

This essay highlights critical aspects of the plausibility of pre-Darwinian evolution. It is based on a critical review of some better-known open, far-from-equilibrium system-based scenarios supposed to explain processes that took place before Darwinian evolution had emerged and that resulted in the origin of the first systems capable of Darwinian evolution. The researchers’ responses to eight crucial questions are reviewed. The majority of the researchers claim that there would have been an evolutionary continuity between chemistry and “biology”. A key question is how did this evolution begin before Darwinian evolution had begun? In other words the question is whether pre-Darwinian evolution is plausible.

Results

Strengths and weaknesses of the reviewed scenarios are presented. They are distinguished between metabolism-first, replicator-first and combined metabolism-replicator models. The metabolism-first scenarios show major issues, the worst concerns heredity and chirality. Although the replicator-first scenarios answer the heredity question they have their own problems, notably chirality. Among the reviewed combined metabolism-replicator models, one shows the fewest issues. In particular, it seems to answer the chiral question, and eventually implies Darwinian evolution from the very beginning. Its main hypothesis needs to be validated with experimental data.

Conclusion

From this critical review it is that the concept of “pre-Darwinian evolution” appears questionable, in particular because it is unlikely if not impossible that any evolution in complexity over time may work without multiplication and heritability allowing the emergence of genetically and ecologically diverse lineages on which natural selection may operate. Only Darwinian evolution could have led to such an evolution. Thus, Pre-Darwinian evolution is not plausible according to the author. Surely, the answer to the question posed in the title is a prerequisite to the understanding of the origin of Darwinian evolution.

Reviewers

This article was reviewed by Purificacion Lopez-Garcia, Anthony Poole, Doron Lancet, and Thomas Dandekar.
  相似文献   

4.
The article addresses the question whether culture evolves in a Lamarckian manner. I highlight three central aspects of a Lamarckian concept of evolution: the inheritance of acquired characteristics, the transformational pattern of evolution, and the concept of directed changes. A clear exposition of these aspects shows that a system can be a Darwinian variational system instead of a Lamarckian transformational one, even if it is based on inheritance of acquired characteristics and/or on Lamarckian directed changes. On this basis, I apply the three aspects to culture. Taking for granted that culture is a variational system, based on selection processes, I discuss in detail the senses in which cultural inheritance can be said to be Lamarckian and in which sense problem solving, a major factor in cultural change, leads to directed variation.  相似文献   

5.
The evolution of eukaryotes was punctuated by invasions of the bacteria that have evolved to mitochondria and plastids. These bacterial endosymbionts founded major eukaryotic lineages by enabling them to carry out aerobic respiration and oxygenic photosynthesis. Yet, having evolved as free-living organisms, they were at first poorly adapted organelles. Although mitochondria and plastids have integrated within the physiology of eukaryotic cells, this integration has probably been constrained by the high level of complexity of their bacterial ancestors and the inability of gradual evolutionary processes to drastically alter complex systems. Here, I review complex processes that directly involve translation of plastid mRNAs and how they could constrain transfer to the nucleus of the genes encoding them.  相似文献   

6.
7.
8.
Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (~155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ~216?Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ~143?Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight.  相似文献   

9.
10.
‘Replaying the tape’ is an intriguing ‘would it happen again?’ exercise. With respect to broad evolutionary innovations, such as photosynthesis, the answers are central to our search for life elsewhere. Photosynthesis permits a large planetary biomass on Earth. Specifically, oxygenic photosynthesis has allowed an oxygenated atmosphere and the evolution of large metabolically demanding creatures, including ourselves. There are at least six prerequisites for the evolution of biological carbon fixation: a carbon-based life form; the presence of inorganic carbon; the availability of reductants; the presence of light; a light-harvesting mechanism to convert the light energy into chemical energy; and carboxylating enzymes. All were present on the early Earth. To provide the evolutionary pressure, organic carbon must be a scarce resource in contrast to inorganic carbon. The probability of evolving a carboxylase is approached by creating an inventory of carbon-fixation enzymes and comparing them, leading to the conclusion that carbon fixation in general is basic to life and has arisen multiple times. Certainly, the evolutionary pressure to evolve new pathways for carbon fixation would have been present early in evolution. From knowledge about planetary systems and extraterrestrial chemistry, if organic carbon-based life occurs elsewhere, photosynthesis—although perhaps not oxygenic photosynthesis—would also have evolved.  相似文献   

11.
As an operational definition, we refer to regions in proteins that do not adopt regular three-dimensional structures in isolation, as disordered regions. An antipode to disorder would be 'well-structured' rather than 'ordered'. Here, we argue for the following three hypotheses. Firstly, it is more useful to picture disorder as a distinct phenomenon in structural biology than as an extreme example of protein flexibility. Secondly, there are many very different flavors of protein disorder, nevertheless, it seems advantageous to portray the universe of all possible proteins in terms of two main types: well-structured, disordered. There might be a third type 'other' but we have so far no positive evidence for this. Thirdly, nature uses protein disorder as a tool to adapt to different environments. Protein disorder is evolutionarily conserved and this maintenance of disorder is highly nontrivial. Increasingly integrating protein disorder into the toolbox of a living cell was a crucial step in the evolution from simple bacteria to complex eukaryotes. We need new advanced computational methods to study this new milestone in the advance of protein biology.  相似文献   

12.
It is widely assumed that high resource specificity predisposes lineages toward greater likelihood of extinction and lower likelihood of diversification than more generalized lineages. This suggests that host range evolution in parasitic organisms should proceed from generalist to specialist, and specialist lineages should be found at the 'tips' of phylogenies. To test these hypotheses, parsimony and maximum likelihood methods were used to reconstruct the evolution of host range on a phylogeny of parasitoid flies in the family Tachinidae. In contrast to predictions, most reconstructions indicated that generalists were repeatedly derived from specialist lineages and tended to occupy terminal branches of the phylogeny. These results are critically examined with respect to hypotheses concerning the evolution of specialization, the inherent difficulties in inferring host ranges, our knowledge of tachinid-host associations, and the methodological problems associated with ancestral character state reconstruction. Both parsimony and likelihood reconstructions are shown to provide misleading results and it is argued that independent evidence, in addition to phylogenetic trees, is needed to inform models of the evolution of host range and the evolutionary consequences of specialization.  相似文献   

13.
14.
In this paper we review and argue for the relevance of the concept of open-ended evolution in biological theory. Defining it as a process in which a set of chemical systems bring about an unlimited variety of equivalent systems that are not subject to any pre-determined upper bound of organizational complexity, we explain why only a special type of self-constructing, autonomous systems can actually implement it. We further argue that this capacity derives from the ‘dynamic decoupling’ (in its minimal or most basic sense: the phenotype–genotype decoupling) by means of which a radically new way of material organization (minimal living organization) is achieved, allowing for the long-term sustenance of systems whose individual-metabolic and collective-historical pathways become thereafter deeply intertwined.
Kepa Ruiz-MirazoEmail:
  相似文献   

15.
A long‐standing question in biology and economics is whether individual organisms evolve to behave as if they were striving to maximize some goal function. We here formalize this “as if” question in a patch‐structured population in which individuals obtain material payoffs from (perhaps very complex multimove) social interactions. These material payoffs determine personal fitness and, ultimately, invasion fitness. We ask whether individuals in uninvadable population states will appear to be maximizing conventional goal functions (with population‐structure coefficients exogenous to the individual's behavior), when what is really being maximized is invasion fitness at the genetic level. We reach two broad conclusions. First, no simple and general individual‐centered goal function emerges from the analysis. This stems from the fact that invasion fitness is a gene‐centered multigenerational measure of evolutionary success. Second, when selection is weak, all multigenerational effects of selection can be summarized in a neutral type‐distribution quantifying identity‐by‐descent between individuals within patches. Individuals then behave as if they were striving to maximize a weighted sum of material payoffs (own and others). At an uninvadable state it is as if individuals would freely choose their actions and play a Nash equilibrium of a game with a goal function that combines self‐interest (own material payoff), group interest (group material payoff if everyone does the same), and local rivalry (material payoff differences).  相似文献   

16.
Information can be conceived as being composed of two complementary components: novelty and confirmation. Whenever either of the two is zero, information is zero. Genetic information too requires both novelty and confirmation. Evolution can be seen as the history of diversification. Selection alone reduces diversity. Recessivity appears to serve as a mechanism to protect diversity against selection. So does the geographical and behavioural “separation” of species. Both recessivity and separation can be seen as “error-friendly”, a broader concept that is supportive of diversity, learning and further evolution. The principle should also be obeyed in technological systems. Received: 4 October 1997 / Accepted in revised form: 26 August 1998  相似文献   

17.
The proposition that glaciation may not have occurred before the Cenozoic--albeit not yet a consensus position--nevertheless raises for reconsideration the surface temperature history of the earth. Glacial episodes, from the Huronian (2.3 billion years ago; BYA) through the late Paleozoic (320 to 250 million years ago; MYA) have been critical constraints on estimation of the upper bounds of temperature (Crowley 1983, Kasting and Toon 1989). Once removed, few if any constraints on the upper temperature limit other than life remain. Walker (1982) recognized that life provides an upper limit to temperature in the Precambrian. We propose a more radical concept: the upper temperature limit for viable growth of a given microbial group corresponds to the actual surface temperature at the time of the group's first appearance. In particular, we propose here that two major evolutionary developments--the emergence of cyanobacteria and aerobic eukaryotes--can be used to determine surface temperature in the Precambrian, and that only subsequent cooling mediated by higher plants and then angiosperms permitted what may possibly be the earth's first glaciation in the late Cenozoic.  相似文献   

18.
K Matsuno 《Bio Systems》1985,17(3):179-192
Material self-assembly as a self-organizing process is always accompanied by symmetry-breaking in the material configuration. Self-sequencing of amino acids during their thermal polymerization has lost a certain property of permutation symmetry that was observed in the mixture of free amino acids. The evolutionary precursor state is more symmetrical about its internal material configuration and more degenerate due to the multitude of the indistinguishable individuals. The evolution proceeds in the direction along which the degeneracy in the internal states dissolves owing to the symmetry-breaking originating in material flow equilibrium of open material aggregates. Protobiological information is latent in the material system which is highly symmetrical and highly degenerate in its internal states. Evolution of matter is an endogenous process in which the earlier symmetric property is lost and less degenerate states are approached. Quantum-mechanically, the generation of protobiological information is due to the symmetry-breaking of the Hamiltonian originating in the interaction with the exterior through material flow, in contrast to the Schrödinger equation which preserves a symmetry and the associated invariants.  相似文献   

19.
20.
Superparasitism refers to the oviposition behavior of parasitoid females who lay their eggs in an already parasitized host. This often yields intense competition among larvae that are sharing the same host. Why would a female oviposit in such hostile habitat instead of looking for a better quality, unparasitized host? Here we present a continuous-time model of host-parasitoid interaction and discuss alternative scenarios. This model is first used to analyze the evolution of the superparasitism behavior of a solitary proovigenic parasitoid under both time and egg limitation. Then, following the recent discovery by Varaldi et al., we allow the parasitoid to be infected by a virus that alters the superparasitism behavior of its host to enhance its own horizontal transmission. The analysis of the coevolution of this manipulative behavior with the oviposition behavior of uninfected females clarifies and quantifies the conflict that emerges between the parasitoid and its virus. The model also yields new testable predictions. For example, we expect that uninfected parasitoids should superparasite less after coevolving with the manipulative virus. More generally, this model provides a theoretical framework for analyzing the evolution of the manipulation of parasitoid life-history traits by microparasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号