首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
OPP: This paper provides the rationale and support for the decisions the OPP will make in requiring and reviewing mutagenicity information. The regulatory requirement for mutagenicity testing to support a pesticide registration is found in the 40 CFR Part 158. The guidance as to the specific mutagenicity testing to be performed is found in the OPP's Pesticide Assessment Guidelines, Subdivision F, Hazard Evaluation: Human and Domestic Animals (referred to as the Subdivision F guideline). A revised Subdivision F guideline has been presented that becomes the current guidance for submitters of mutagenicity data to the OPP. The decision to revise the guideline was the result of close examination of the version published in 1982 and the desire to update the guidance based on developments since then and current state-of-the-science. After undergoing Agency and public scrutiny, the revised guideline is to be published in 1991. The revised guideline consists of an initial battery of tests (the Salmonella assay, an in vitro mammalian gene mutation assay and an in vivo cytogenetics assay which may be either a bone marrow assay for chromosomal aberrations or for micronuclei formation) that should provide an adequate initial assessment of the potential mutagenicity of a chemical. Follow-up testing to clarify results from the initial testing may be necessary. After this information as well as all other relevant information is obtained, a weight-of-evidence decision will be made about the possible mutagenicity concern a chemical may present. Testing to pursue qualitative and/or quantitative evidence for assessing heritable risk in relation to human beings will then be considered if a mutagenicity concern exists. This testing may range from tests for evidence of gonadal exposure to dominant lethal testing to quantitative tests such as the specific locus and heritable translocation assays. The mutagenicity assessment will be performed in accordance with the Agency's Mutagenicity Risk Assessment Guidelines. The mutagenicity data would also be used in the weight-of-evidence consideration for the potential carcinogenicity of a chemical in accordance with the Agency's Carcinogen Risk Assessment Guidelines. In instances where there are triggers for carcinogenicity testing, mutagenicity data may be used as one of the triggers after a consideration of available information. It is felt that the revised Subdivision F guideline will provide appropriate, and more specific, guidance concerning the OPP approach to mutagenicity testing for the registration of a pesticide. It also provides a clearer understanding of how the OPP will proceed with its evaluation and decision making concerning the potential heritable effects of a test chemical.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The removal of carconogenic factors would be a most efficient measure to prevent cancer. As far as known chemicals are concerned, every effort is made to avert them, or at least to reduce the exposure to such compounds, but is necessary to detect unknown chemicals, especially those, drugs and foodstuffs for example, to which large populations are exposed. Giving suspected chemicals to laboratory animals is a standard carcinogenicity test. Studies of the carcinogenicity of unknown chemicals in animals are time consuming, expensive and cumbersome. This is why other means of establishing carcinogenicity are sought for. Several rapid tests are available to-day to select suspected carcinogens. These methods aim primarily at determining with chemicals--at the cell or tissue level--certain changes that would appear essential to trigger the carcinogenic process, such as somatic mutations. Studies are used on the mutagenicity of chemicals for bacteria of the Salmonella type, for yeast and cultured mammalian cells, together with the induction of recessive lethal mutations in Drosophila and of the unscheduled repair synthesis of DNA and the transformation of mammalian cells in vitro. Although there is an unequivocal correlation between the activity of chemicals in such tests and their carcinogenicity, discrepancies are found. Thus, the in vivo tests on laboratory animals remain the most reliable method to determine carcinogenicity. Whereas direct extrapolation of experimental data to human pathology is impossible, the experimental evidence of the carcinogenicity of any chemical should allow us to draw constructive conclusions. We shall never be able to reject drugs which produce the expected results and cannot be replaced by other drugs. But we can must the drugs whose beneficial effects are not exceptional and which can be replaced by other chemicals. As for the chemicals used in food additives and cosmetics, and recognized as carcinogenic in animals, they should be totally given up. Any decision made should be based on animal studies.  相似文献   

3.
In the context of medical screening, various diagnostic tests have been developed for determining whether a disease is present in an individual. Similarly, in the context of toxicological screening, a variety of short-term assays have been developed to predict whether a chemical would be carcinogenic if tested in a long-term bioassay. In both contexts, it is a challenge to combine the results of several predictive tests in a way that improves on the predictivity of the individual tests. Increases in positive predictivity can be accompanied by decreases in negative predictivity, and vice versa. This article presents a decision-tree classification model for combining results from several independent short-term or diagnostic tests to quantify the likelihood of a true positive result (patient has disease, or chemical is carcinogenic). The decision-tree strategy determines the most advantageous sequence for conducting the predictive tests. The classification model is based on statistical confidence limits on the predictive probability of disease (carcinogenicity) rather than on the central estimate of the predictive probability. This model is applied to the assessment of the abilities of four short-term tests in the prediction of chemical carcinogenicity under the assumption of independence among the four tests, and is used to demonstrate a testing strategy for the application of three pancreatic cancer diagnostic tests.  相似文献   

4.
The ability of plant genotoxicity assays to predict carcinogenicity   总被引:3,自引:0,他引:3  
A number of assays have been developed which use higher plants for measuring mutagenic or cytogenetic effects of chemicals, as an indication of carcinogenicity. Plant assays require less extensive equipment, materials and personnel than most other genotoxicity tests, which is a potential advantage, particularly in less developed parts of the world. We have analyzed data on 9 plant genotoxicity assays evaluated by the Gene-Tox program of the U.S. Environmental Protection Agency, using methodologies we have recently developed to assess the capability of assays to predict carcinogenicity and carcinogenic potency. All 9 of the plant assays appear to have high sensitivity (few false negatives). Specificity (rate of true negatives) was more difficult to evaluate because of limited testing on non-carcinogens; however, available data indicate that only the Arabidopsis mutagenicity (ArM) test appears to have high specificity. Based upon their high sensitivity, plant genotoxicity tests are most appropriate for a risk-averse testing program, because although many false positives will be generated, the relatively few negative results will be quite reliable.  相似文献   

5.
A three-tier approach to mutagenicity evaluation has previously been proposed [1] with three underlying general principles. (1) No generally mutagenic chemical should be released into the environment or be permitted to be used if there exists a satisfactory non-mutagenic substitute; (2) the extent and rigour of the screening procedures should be related to the extent to which man is, or is likely to be exposed to the agent; (3) a mutagenic substance may be used if the benefits are judged to be great enough to outweigh the hazards and if appropriate controls are exercised. The first tier contains short-term screening tests with sub-mammalian systems, the second tier contains short- and longer-term tests with whole mammals, and the third tier involves a risk-benefit evaluation which may entail further more specialized testing procedures and experiments on the detailed metabolism of the agent in vivo.Such a scheme may in principle be used wherever there exists a long-term hazard for which short-term predicitive tests exist. Carcinogenicity evaluation fits well into a three tier approach and evaluation for carcinogenicity and mutagenicity may be run in parallel with some degree of overlap [2]. Long term carcinogenicity trials fall into tier 2, for example, while tier 1 may include (in addition to mutagenicity) such tests as degranulation of endoplasmic reticulum [3] induction of biphenyl hydroxylase [4] and transformation of cells to malignancy in vitro.The third tier of risk-benefit evaluation involves the determination of risk. This is almost impossible to do in a quantitative manner at the present time. Nevertheless some guidance must be given to the decision-maker, however approximate and surrounded by reservations it may be. One approach is to use the radiation-equivalent dose concept using data from a system that is as closely related as possible to man [1]. Such a result may have some validity for the particular end-point and dose range used. Other end-points and dose ranges may give a different value for radiation equivalence and the weight given to it must be determined by the likely importance of the end-point in constituting a genetic hazard to man. The radiation-equivalent dose is thus a common unit of convenience for chemical mutagens which also has the advantage of being more readily understood by regulators and decision-makers without a genetic background. An example of a tentative and qualified radiation-equivalent calculation has been carried out for the fungicide captan [5]. The use of radiation-equivalent concept by Committee 17 [6] seems to imply a near constancy of radiation equivalent dose values over a wide range of species and end-points. This extensio of the radiation-equivalent concept from its use as an approximate common unit of effect to a philosophy for making extrapolations between widely different species does not seem to be justified at the present time.  相似文献   

6.
7.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

8.
Gordon T  Bowser D 《Mutation research》2003,533(1-2):99-105
Beryllium (Be) has physical-chemical properties, including low density and high tensile strength, which make it useful in the manufacture of products ranging from space shuttles to golf clubs. Despite its utility, a number of standard setting agencies have determined that beryllium is a carcinogen. Only a limited number of studies, however, have addressed the underlying mechanisms of the carcinogenicity and mutagenicity of beryllium. Importantly, mutation and chromosomal aberration assays have yielded somewhat contradictory results for beryllium compounds and whereas bacterial tests were largely negative, mammalian test systems showed evidence of beryllium-induced mutations, chromosomal aberrations, and cell transformation. Although inter-laboratory differences may play a role in the variability observed in genotoxicity assays, it is more likely that the different chemical forms of beryllium have a significant effect on mutagenicity and carcinogenicity. Because workers are predominantly exposed to airborne particles which are generated during the machining of beryllium metal, ceramics, or alloys, testing of the mechanisms of the mutagenic and carcinogenic activity of beryllium should be performed with relevant chemical forms of beryllium.  相似文献   

9.
Transgenic mouse modelling has proved to be a powerful approach to explore the various steps involved in spontaneous and induced carcinogenesis. Some of the multitude of models currently available have the potential to become a substitute for the expensive, long-term rodent bioassay to predict carcinogenicity of environmental compounds. Here, we review the progress in the development and use of transgenic mouse models specifically for the purpose of carcinogenicity and mutagenicity testing.  相似文献   

10.
Strategies and testing methods for identifying mutagenic risks   总被引:4,自引:0,他引:4  
The evolution of testing strategies and methods for identification of mutagenic agents is discussed, beginning with the concern over potential health and population effects of chemical mutagens in the late 1940s that led to the development of regulatory guidelines for mutagenicity testing in the 1970s and 1980s. Efforts to achieve international harmonization of mutagenicity testing guidelines are summarized, and current issues and needs in the field are discussed, including the need for quantitative methods of mutagenic risk assessment, dose-response thresholds, indirect mechanisms of mutagenicity, and the predictivity of mutagenicity assays for carcinogenicity in vivo. Speculation is offered about the future of mutagenicity testing, including possible near-term changes in standard test batteries and the longer-term roles of expression profiling of damage-response genes, in vivo mutagenicity testing methods, and models that better account for differences in metabolism between humans and laboratory model systems.  相似文献   

11.
In 1969, the International Agency for Research on Cancer (IARC) initiated the Monographs Programme to evaluate the carcinogenic risk of chemicals to humans. Results from short-term mutagenicity tests were first included in the IARC Monographs in the mid-1970s based on the observation that most carcinogens are also mutagens, although not all mutagens are carcinogens. Experimental evidence at that time showed a strong correlation between mutagenicity and carcinogenicity and indicated that short-term mutagenicity tests are useful for predicting carcinogenicity. Although the strength of these correlations has diminished over the past 20 years with the identification of putative nongenotoxic carcinogens, such tests provide vital information for identifying potential human carcinogens and understanding mechanisms of carcinogenesis. The short-term test results for agents compiled in the EPA/IARC Genetic Activity Profile (GAP) database over nearly 15 years are summarized and reviewed here with regard to their IARC carcinogenicity classifications. The evidence of mutagenicity or nonmutagenicity based on a 'defining set' of test results from three genetic endpoints (gene mutation, chromosomal aberrations, and aneuploidy) is examined. Recommendations are made for assessing chemicals based on the strength of evidence from short-term tests, and the implications of this approach in identifying mutational mechanisms of carcinogenesis are discussed. The role of short-term test data in influencing the overall classification of specific compounds in recent Monograph volumes is discussed, particularly with reference to studies in human populations. Ethylene oxide is cited as an example.  相似文献   

12.
The aim of the present study was to evaluate the usefulness of different pairs of DNA repair-deficient and DNA repair-proficient bacterial tester strains in a mutagenicity/carcinogenicity screen, possibly as complements to the Ames test. 70 carcinogenic and non-carcinogenic compounds, representing a variety of chemical structures, were tested for their DNA-damaging effects, using 6 different DNA-repair-deficient bacterial strains. 2 Bacillus subtilis systems, H17/M45 and HLL3g/HJ-15, were used. The susceptibility of Escherichia coli AB1157 was compared with the susceptibility of 4 recombination-deficient mutants, JC5547, JC2921, JC2926 and JC5519. The test compounds were applied onto paper disks (spot test, ST), or incorporated into a top agar layer (agar-incorporation test, AT). The 2 B. subtilis systems were generally found to be more sensitive and reliable than the assays using E coli. The incorporation of the test compounds in the agar increased the sensitivity of the test for polycyclic aromatic hydrocarbons and other poorly water-soluble compounds. Hydrazines and several other highly polar chemicals could be tested more efficiently when applied onto paper disks. About 30% of the test compounds did not induce any growth inhibition and so could not be tested properly. In order to evaluate the ability of these DNA-repair tests to complement the Ames Salmonella mutagenicity test in a genetic toxicology screening program, results from this study were compared with published data both on mutagenicity in the Ames test and on carcinogenicity. 8 carcinogens generally found to be non-mutagenic for Salmonella were tested: 2 showed DNA-damaging properties (mitomycin C, 1,2-dimethylhydrazine), 5 failed to do so (actinomycin D, griseofulvin, thioacetamide, diethylstilbestrol, safrole), and one (thiourea) was not toxic, so that no classification was possible. 2 non-carcinogenic bacterial mutagens were examined; one, sodium azide, was equitoxic for repair-proficient and -deficient strains, while the other, nitrofurantoin, primarily inhibited repair-deficient strains. The DNA-repair tests failed to indicate the mutagenic and carcinogenic properties of acridine orange. Nalidixic acid, a non-mutagenic DNA synthesis inhibitor, damaged bacterial DNA. Apart from the differences summarized above, carcinogenicity was indicated correctly by the Salmonella S9 assay and most sets of DNA-repair-deficient and DNA-repair-proficient tester strains evaluated in this study. Thus, several more carcinogens could be detected by performing the Ames test and the bacterial DNA-repair tests in tandem than by using either test alone. Nevertheless, the use of both bacterial in vitro systems in a battery of short-term tests for mutagenicity/carcinogenicity evaluation is not considered to be ideal, since the Ames test and the pairs of DNA-repair-deficient and DNA-repair-proficient tester strains used had several shortcomings in common under the conditions of this study.  相似文献   

13.
Nomura T 《Mutation research》2008,659(1-2):185-193
Exposure of mouse germ cells to radiation and chemicals results in mutation, malformation, cancer and other adverse effects (e.g., functional disorders) in the offspring, though these findings have not been proven in human studies. Environmental toxic substances such as urethane (ethyl carbamate) which had been injected subcutaneously to 50 million people as a co-solvent of analgesics and dioxin (an endocrine disruptor) have been found to be associated with adverse effects in the progeny of mice after parental exposures. There are some reports on congenital malformations in the progeny of fathers who had been exposed to dioxin. However, these substances have not shown mutagenicity in in vitro assay systems such as bacterial systems even with S9, cell transformation assays, etc., in spite of their potent teratogenicity and carcinogenicity in in vivo systems. Urethane was negative in the mouse specific locus test for germ cell mutations, but elicited a significant response at the same loci in the offspring of mice treated during pregnancy. Further, urethane is a mutagen in Drosophila germ cell tests, specifically inducing point mutations. Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) does not induce in vivo somatic mutations in mice and rats. It does not induce chromosomal aberrations when the mouse and/or human sperm are treated, but induces mutations at ESTR (expanded simple tandem repeat) loci in mice at low frequencies and also congenital malformations. In this paper, we first present an overview of the results of our studies on transgenerational effects of these toxic substances, compare the results with those obtained after radiation exposure, and then discuss our subsequent studies to reconcile the problems underlying their mutagenicity, teratogenicity and carcinogenicity.  相似文献   

14.
The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.  相似文献   

15.
In Brazil, medicinal plants are widely used by the indigenous people, which leads to a constant requirement for toxicity tests to be performed on the plant extracts. Although the current Brazilian Directive 90/2004 on the preclinical toxicity testing of phytotherapeutics recommends only in vivo tests, some Brazilian researchers would like to change this situation by implementing the Three Rs in the toxicological testing of medicinal plants. The present study evaluated the cytotoxic and genotoxic potentials of bark extracts from Dipteryx alata Vogel, a medicinal plant of the Brazilian cerrado, by using CHO-K1 (Chinese hamster ovary) cells. An IC50 value was obtained, which corresponded to 0.16mg/ml of plant extract, and from this the equivalent LD50 was determined as 705mg/kg. In order to determine the genotoxic potential of the sample, the frequency of micronucleus formation was assessed. CHO-K1 cells were exposed, during targeted mitosis, to different concentrations of plant extract and cytochalasin B, in the presence and absence of an appropriate metabolic activation system (an S9 mix). The results obtained indicated that it might be possible to implement the Three Rs in assessing the potential human hazard of medicinal plants. The publication of such data can increase awareness of the Three Rs by showing how to optimise the management of animal use, if in vivo toxicological experiments are required.  相似文献   

16.
The genetic toxicity of human carcinogens and its implications   总被引:9,自引:0,他引:9  
23 chemicals and chemical combinations have been designated by the International Agency for Research on Cancer (IARC) as causally associated with cancer in humans. The literature was searched for reports of their activity in the Salmonella mutagenicity assay and for evidence of their ability to induce chromosome aberrations or micronuclei in the bone marrow of mice or rats. In addition, the chemical structures of these carcinogens were assessed for the presence of electrophilic substituents that might be associated with their mutagenicity and carcinogenicity. The purpose of this study was to determine which human carcinogens exhibit genetic toxicity in vitro and in vivo and to what extent they can be detected using these two widely employed short-term tests for genetic toxicity. The results of this study revealed 20 of the 23 carcinogens to be active in one or both short-term tests. Treosulphan, for which short-term test results are not available, is predicted to be active based on its structure. The remaining two agents, asbestos and conjugated estrogens, are not mutagenic to Salmonella; asbestos is not likely to induce cytogenetic effects in the bone marrow and the potential activity of conjugated estrogens in the bone marrow is difficult to anticipate. These findings show that genetic toxicity is characteristic of the majority of IARC Group 1 human carcinogens. If these chemicals are considered representative of human carcinogens, then two short-term tests may serve as an effective primary screen for chemicals that present a carcinogenic hazard to humans.  相似文献   

17.
S Madle  A Korte  R Bass 《Mutation research》1987,182(4):187-192
Quality and quantity of mutagenicity testing were analyzed for drugs with new active compounds which were submitted for registration in the Federal Republic of Germany from mid 1982 to mid 1986. A large variety of deficiencies was found, applying to selection and number of mutagenicity tests as well as to test performances. Only 65 out of the 144 drugs submitted for registration were tested sufficiently in the initial phase of registration. From 1982 to 1986 this situation has not been changed markedly. Inadequate test performance still remains the main reason for insufficient testing, leading in some cases to artificially positive results. For in vivo tests the selection of test species was mainly motivated by technical reasons and not by characteristics of the test compound. Most of the insufficiencies were eliminated during the second phase of registration. In some cases insufficient mutagenicity testing led to consequences concerning risk-benefit assessment of the drug and its regulation.  相似文献   

18.
The efficiency of scoring somatic mutations in soybean (Glycine max (L.) Merrill) leaves as a test for carcinogenic activity of chemical substances in rodents has been evaluated. The efficiency of the test used alone or as part of a battery of tests has been estimated. The mutagenic activities of some chemical substances estimated using the soybean test are presented. Selective information on the carcinogenic activities of substances obtained in special carcinogenicity tests has been used as a quantitative measure of the efficiency of the tests with soybean leaves. To estimate the weight of evidence for the presence of this activity in the tested substances, a special function has been used whose values are uniquely related to the complete information, which is the sum of a priori information and the information obtained after testing. In general, the results have shown that the somatic mutation score test using soybean leaves is at least as efficient as the well-known tests that are generally used now, such as the Ames test and the chromosome aberration score test using mammalian cells in vitro. This test may be promising for the formation of efficient short-term test batteries.  相似文献   

19.
Many mutation tests have been developed in Neurospora crassa during the almost 40 years of its use in mutation research. These tests detect two major classes of mutation: gene mutation and meiotic nondisjunction. Within the first class, forward- and reverse-mutation tests have been used. The forward-mutation tests include those that detect mutations at many loci and at specific loci. Both kinds of forward-mutation tests have been done in homokaryons (n) and heterokaryons (n + n'). From the publications that were not rejected by our pre-established criteria, data were extracted for 166 chemicals that had been tested for mutagenicity. Only 6 of the 166 chemicals have been tested in one or more gene mutation test and the meiotic nondisjunction test; these 6 chemicals were positive in the first and negative in the second. Of the 102 chemicals tested in one or more gene mutation tests, 94 were positive and 8 were negative. Of the 70 chemicals tested in the meiotic nondisjunction test, 7 were positive and 63 were negative. Two tests, the ad-3 forward-mutation test and the meiotic nondisjunction test, have been used most frequently. These two tests are especially important for hazard evaluation, because each detects a class of mutations that is likely to be deleterious or lethal in the F1 - disomics by the meiotic nondisjunction test and multilocus deletions by the ad-3 forward-mutation test in heterokaryons. Generally, direct-acting chemicals are mutagenic in the gene mutation tests, but few chemicals that required metabolic activation have been tested. Only 31 of the 166 chemicals tested in N. crassa have been tested for carcinogenicity. Among these chemicals, there is a good association between mutagenicity in gene mutation tests and carcinogenicity but a poorer association between meiotic nondisjunction and carcinogenicity; however, only a small number of chemicals has been tested in the meiotic nondisjunction test. Further use and development of certain mutation tests in N. crassa are desirable.  相似文献   

20.
The Salmonella assay has been in use for almost 15 years and can be defined as a routine test for mutagenicity and for predicting potential carcinogenicity. It detects the majority of animal carcinogens and consequently plays an important role in safety assessment. The test is also routinely used as the frontline screen for environmental samples (complex mixtures) isolated from air, water and food. This role will continue to remain an area of growth as or because sample volumes associated with these testing areas are generally very limited and more extensive testing is generally impossible. While this test, like all others, has some limitations, it is recommended that it be regularly included in all genetic testing batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号