首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced glycation end products (AGEs) have been confirmed to induce bone quality deterioration in diabetes mellitus (DM), and to associate with abnormal expression of miRNAs in DM patients or in vitro. Recently, miRNAs have been recognized to mediate the onset or progression of DM. In the present study, we investigated the regulation on miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells, with real-time quantitative PCR assay. And then we examined the inhibition of insulin-like growth factor 1 receptor (IGF-1R) expression by miR-223, via targeting of the 3′ UTR of IGF-1R with real-time quantitative PCR, western blotting and luciferase reporter assay. Then we explored the regulation of miR-223 and IGF-1R levels, via the lentivirus-mediated miR-223 inhibition and IGF-1R overexpression in the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It was demonstrated that AGE-BSA treatment with more than 100 μg/ml significantly up-regulated miR-223 level, whereas down-regulated IGF-1R level in MC3T3-E1 cells. And the up-regulated miR-223 down-regulated IGF-1R expression in both mRNA and protein levels, via targeting the 3′ UTR of IGF-1R. Moreover, though the AGE-BSA treatment promoted apoptosis in MC3T3-E1 cells, the IGF-1R overexpression or the miR-223 inhibition significantly attenuated the AGE-BSA-promoted apoptosis in MC3T3-E1 cells. In summary, our study recognized the promotion of miR-223 level by AGE-BSA treatment in osteoblast-like MC3T3-E1 cells. The promoted miR-223 targeted IGF-1R and mediated the AGE-BSA-induced apoptosis in MC3T3-E1 cells. It implies that miR-223 might be an effective therapeutic target to antagonize the AGE-induced damage to osteoblasts in DM.  相似文献   

2.
MicroRNAs (miRNAs) and related polymorphisms have been implicated in the susceptibility to oesophageal squamous cell carcinoma (OSCC). In our study, three miRNA-related SNPs: rs6505162 A>C (pre-miRNA of miR-423), rs213210 A>G (3’UTR of miR-219-1) and rs7372209 C>T (5’UTR of miR-26a-1) were investigated in the Black and Mixed Ancestry population groups in South Africa. The potential cumulative effects of these SNPs, as well as gene-environment interactions were also analysed. In Blacks, rs6505162 A>C was associated with OSCC under dominant, additive and recessive models with odds ratios (ORs) 1.353, 1.404, and 2.858, respectively. This locus showed very strong interactions with smoke inhalation from burning wood or charcoal used for heating and cooking in very poorly ventilated areas (OR(GE)=7.855, P(GE)=9.17*10-10 in the Black group). Furthermore, the miR-423-3p level was 1.39 fold up-regulated in tumour tissues compared to the adjacent normal tissue (paired t-test P value 0.0087). SNP-SNP interaction between rs2132210 and rs7372209 was found in both Black and Mixed Ancestry subjects. The AArs213210-CTrs7372209 genotype had a protective effect on OSCC risk (in the Black, OR=0.229, P=0.012; and the Mixed Ancestry groups, OR=0.230, P=0.00014). This study is the first to link SNPs in miR-423 together with environmental smoke exposure to risk for developing OSCC.  相似文献   

3.
4.
MicroRNAs (miRNAs) have been reported to play a key role in oncogenesis. Genetic variations in miRNA processing genes and miRNA binding sites may affect the biogenesis of miRNA and the miRNA-mRNA interactions, hence promoting tumorigenesis. In the present study, we hypothesized that potentially functional polymorphisms in miRNA processing genes may contribute to head and neck cancer (HNC) susceptibility. To test this hypothesis, we genotyped three SNPs at miRNA binding sites of miRNA processing genes (rs1057035 in 3′UTR of DICER, rs3803012 in 3′UTR of RAN and rs10773771 in 3′UTR of HIWI) with a case-control study including 397 HNC cases and 900 controls matched by age and sex in Chinese. Although none of three SNPs was significantly associated with overall risk of HNC, rs1057035 in 3′UTR of DICER was associated with a significantly decreased risk of oral cancer (TC/CC vs. TT: adjusted OR  = 0.65, 95% CI  = 0.46–0.92). Furthermore, luciferase activity assay showed that rs1057035 variant C allele led to significantly lower expression levels as compared to the T allele, which may be due to the relatively high inhibition of hsa-miR-574-3p on DICER mRNA. These findings indicated that rs1057035 located at 3′UTR of DICER may contribute to the risk of oral cancer by affecting the binding of miRNAs to DICER. Large-scale and well-designed studies are warranted to validate our findings.  相似文献   

5.
6.
7.
Previous studies and replication analyses have linked chromosome 18q21.1–23 with type 2 diabetes (T2DM) and its complications, including diabetic nephropathy (DN). Here we investigated the association of POL1-nearby variant rs488846, MALT1-nearby variant rs2874116, MC4R-nearby variant rs1942872, PHLPP rs9958800 and DSEL-nearby variant rs9966483 single nucleotide polymorphisms (SNPs) in the 18q region, previously linked with DN in African-Americans, with T2DM in (North African) Tunisian subjects, followed by their association with DN, which was performed subsequent to the analysis of the association with T2DM. Study subjects comprised 900 T2DM cases and 748 normoglycemic control, and genotyping was carried out by PCR–RFLP analysis. Of the 5 SNPs analyzed, POL1-nearby variant rs488846 [P = 0.044], and MC4R-nearby variant rs1942872 [P = 0.012] were associated with moderate risk of T2DM. However, there was a lack of consistency in the association of the 5 tested SNPs with DN. As such, it appears that the three chromosome 18q region variants appear to play a role in T2DM pathogenesis, but not with DN in North African Tunisian Arabs.  相似文献   

8.

Background

Evidence has accumulated that multiple genetic and environmental factors play important roles in determining susceptibility to type 2 diabetes (T2D). Although variants from candidate genes have become prime targets for genetic analysis, few studies have considered their interplay. Our goal was to evaluate interactions among SNPs within genes frequently identified as associated with T2D.

Methods/Principal Findings

Logistic regression was used to study interactions among 4 SNPs, one each from HNF4A[rs1884613], TCF7L2[rs12255372], WFS1[rs10010131], and KCNJ11[rs5219] in a case-control Ashkenazi sample of 974 diabetic subjects and 896 controls. Nonparametric multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) were used to confirm findings from the logistic regression analysis. HNF4A and WFS1 SNPs were associated with T2D in logistic regression analyses [P<0.0001, P<0.0002, respectively]. Interaction between these SNPs were also strong using parametric or nonparametric methods: the unadjusted odds of being affected with T2D was 3 times greater in subjects with the HNF4A and WFS1 risk alleles than those without either (95% CI = [1.7–5.3]; P≤0.0001). Although the univariate association between the TCF7L2 SNP and T2D was relatively modest [P = 0.02], when paired with the HNF4A SNP, the OR for subjects with risk alleles in both SNPs was 2.4 [95% CI = 1.7–3.4; P≤0.0001]. The KCNJ11 variant reached significance only when paired with either the HNF4A or WFSI SNPs: unadjusted ORs were 2.0 [95% CI = 1.4–2.8; P≤0.0001] and 2.3 [95% CI = 1.2-4.4; P≤0.0001], respectively. MDR and GMDR results were consistent with the parametric findings.

Conclusions

These results provide evidence of strong independent associations between T2D and SNPs in HNF4A and WFS1 and their interaction in our Ashkenazi sample. We also observed an interaction in the nonparametric analysis between the HNF4A and KCNJ11 SNPs (P≤0.001), demonstrating that an independently non-significant variant may interact with another variant resulting in an increased disease risk.  相似文献   

9.
10.
11.

Background

Chronic exposure to arsenic in drinking water is associated with increased risk of type 2 diabetes mellitus (T2DM) but the underlying molecular mechanism remains unclear.

Objectives

This study evaluated the interaction between single nucleotide polymorphisms (SNPs) in genes associated with diabetes and arsenic exposure in drinking water on the risk of developing T2DM.

Methods

In 2009–2011, we conducted a follow up study of 957 Bangladeshi adults who participated in a case-control study of arsenic-induced skin lesions in 2001–2003. Logistic regression models were used to evaluate the association between 38 SNPs in 18 genes and risk of T2DM measured at follow up. T2DM was defined as having a blood hemoglobin A1C level greater than or equal to 6.5% at follow-up. Arsenic exposure was characterized by drinking water samples collected from participants'' tubewells. False discovery rates were applied in the analysis to control for multiple comparisons.

Results

Median arsenic levels in 2001–2003 were higher among diabetic participants compared with non-diabetic ones (71.6 µg/L vs. 12.5 µg/L, p-value <0.001). Three SNPs in ADAMTS9 were nominally associated with increased risk of T2DM (rs17070905, Odds Ratio (OR)  = 2.30, 95% confidence interval (CI) 1.17–4.50; rs17070967, OR = 2.02, 95%CI 1.00–4.06; rs6766801, OR = 2.33, 95%CI 1.18–4.60), but these associations did not reach the statistical significance after adjusting for multiple comparisons. A significant interaction between arsenic and NOTCH2 (rs699780) was observed which significantly increased the risk of T2DM (p for interaction = 0.003; q-value = 0.021). Further restricted analysis among participants exposed to water arsenic of less than 148 µg/L showed consistent results for interaction between the NOTCH2 variant and arsenic exposure on T2DM (p for interaction  = 0.048; q-value = 0.004).

Conclusions

These findings suggest that genetic variation in NOTCH2 increased susceptibility to T2DM among people exposed to inorganic arsenic. Additionally, genetic variants in ADAMTS9 may increase the risk of T2DM.  相似文献   

12.

Background

IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity.

Methods and Results

Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3′- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS.

Conclusions

These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases.  相似文献   

13.
Background: There is accumulating evidence of aberrant expression of miR-143 and miR-145 and their target gene KRAS in colorectal cancer (CRC). We hypothesize that single nucleotide polymorphisms (SNPs) within or near mRNA–microRNA (miRNA) binding sites may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and promoting the development and progression of CRC. Methods: We conducted a case–control study of 507 patients with CRC recruited from a tertiary hospital and 497 population-based controls to assess the association of genetic polymorphisms in miR-143/145 and the KRAS 3′ untranslated region (3′UTR) with susceptibility to CRC and patients’ survival. In addition, genetic variations of genomic regions located from 500 bp upstream to 500 bp downstream of the miR-143/miR-145 gene and the 3′UTR of KRAS were selected for analysis using the Haploview and HaploReg software. Results: Using publicly available expression profiling data, we found that miR-143/145 and KRAS expression were all reduced in rectal cancer tissue compared with adjacent non-neoplastic large intestinal mucosa. The rs74693964 C/T variant located 65 bp downstream of miR-145 genomic regions was observed to be associated with susceptibility to CRC (adjusted odds ratio (OR): 2.414, 95% CI: 1.385–4.206). Cumulative effects of miR-143 and miR-145 on CRC risk were observed (Ptrend=0.03). Patients having CRC carrying variant genotype TT of KRAS rs712 had poorer survival (log-rank P=0.044, adjusted hazard ratio (HR): 4.328, 95% CI: 1.236–15.147). Conclusions: Our results indicate that miRNA-related polymorphisms in miR-143/145 and KRAS are likely to be deleterious and represent potential biomarkers for susceptibility to CRC and patients’ survival.  相似文献   

14.
15.
Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3′ UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR–RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T–T 3′ UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3′ UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels.  相似文献   

16.
Genetic variants in human microRNA (miRNA) genes may alter mature miRNA processing and/or target selection, and likely contribute to cancer susceptibility and disease progression. Previous studies have suggested that miR-101 may play important roles in the development of cancer by regulating key tumor-associated genes. However, the role of single nucleotide polymorphisms (SNPs) of miR-101 in breast cancer susceptibility remains unclear. In this study, we genotyped 11 SNPs of the miR-101 genes (including miR-101-1 and miR-101-2) in a case-control study of 1064 breast cancer cases and 1073 cancer-free controls. The results revealed that rs462480 and rs1053872 in the flank regions of pre-miR-101-2 were significantly associated with increased risk of breast cancer (rs462480 AC/CC vs AA: adjusted OR = 1.182, 95% CI: 1.030–1.357, P = 0.017; rs1053872 CG/GG vs CC: adjusted OR = 1.179, 95% CI: 1.040–1.337, P = 0.010). However, the remaining 9 SNPs were not significantly associated with risk of breast cancer. Additionally, combined analysis of the two high-risk SNPs revealed that subjects carrying the variant genotypes of rs462480 and rs1053872 had increased risk of breast cancer in a dose-response manner (P trend = 0.002). Compared with individuals with “0–1” risk allele, those carrying “2–4” risk alleles had 1.29-fold risk of breast cancer. In conclusion, these findings suggested that the SNPs rs462480 and rs1053872 residing in miR-101-2 gene may have a solid impact on genetic susceptibility to breast cancer, which may improve our understanding of the potential contribution of miRNA SNPs to cancer pathogenesis.  相似文献   

17.
miR-185 is a microRNA (miR) that targets Bruton''s tyrosine kinase in B cells, with reductions in miR-185 linked to B cell autoantibody production. In hippocampal neurons, miR-185 targets both sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and a novel Golgi inhibitor. This miR is haploinsufficient in 90–95% of individuals with chromosome 22q11.2 deletion syndrome, patients who can present with immune, cardiac, and parathyroid problems, learning disorders, and a high incidence of schizophrenia in adults. The reduced levels of miR-185 in neurons cause presynaptic neurotransmitter release. Many of the 22q11.2 deletion syndrome patients have a thymic hypoplasia, which results in a peripheral T cell lymphopenia and unusual T helper cell skewing. The molecular targets of miR-185 in thymocytes are unknown. Using an miR-185 T cell transgenic approach, increasing levels of miR-185 attenuated T cell development at the T cell receptor β (TCRβ) selection checkpoint and during positive selection. This caused a peripheral T cell lymphopenia. Mzb1, Nfatc3, and Camk4 were identified as novel miR-185 targets. Elevations in miR-185 enhanced TCR-dependent intracellular calcium levels, whereas a knockdown of miR-185 diminished these calcium responses. These effects concur with reductions in Mzb1, an endoplasmic reticulum calcium regulator. Consistent with their haploinsufficiency of miR-185, Mzb1 levels were elevated in thymocyte extracts from several 22q11.2 deletion syndrome patients. Our findings indicate that miR-185 regulates T cell development through its targeting of several mRNAs including Mzb1.  相似文献   

18.
Insulin resistance plays an important role in the development of type 2 diabetes mellitus (T2DM) and hypertension. The purpose of the present study was to evaluate the association between four insulin resistance genes (ADIPOQ, LEPR, RETN, and TRIB3) and both T2DM and hypertension. A total of 768 Han Chinese subjects were recruited into this study, including 188 cases who had T2DM alone, 223 cases who had hypertension alone, 181 cases with both T2DM and hypertension, and 176 control subjects with neither T2DM nor hypertension. Twenty-three tag SNPs in four insulin resistance genes were genotyped and analyzed for association with T2DM and hypertension. One intron SNP (rs13306519) in LEPR and one 3′UTR SNP (rs1063537) in ADIPOQ demonstrated a significant association with T2DM (P = 0.024 and 0.014 respectively). Another intron SNP (rs12037879) in LEPR and a promoter region SNP (rs266729) in ADIPOQ were significantly associated with hypertension (P = 0.041 and 0.042, respectively). These associations survived the permutation test (P = 0.023, 0.018, 0.026, and 0.035, respectively). These associations were still found to be significant in the additive model after adjusting for potential confounding factors including age, sex, BMI, HDL, LDL, total cholesterol, and triglyceride levels (P = 0.024, 0.016, 0.04, and 0.043, respectively). No other gene variants were found to be significantly associated with T2DM or hypertension (P > 0.05). None of the studied gene variants were found to be significantly associated with T2DM+ hypertension (P > 0.05). A significant interaction was observed between two SNPs rs13306519 in LEPR and rs266729 in ADIPOQ for T2DM (P_int = 0.012, OR_int = 2.67) and hypertension (P_int = 0.0041, OR_int = 2.23). These findings suggest that variants in ADIPOQ and LEPR are risk factors for T2DM and hypertension in the Chinese population and that variants in RETN and TRIB3 are not major risk factors for these diseases.  相似文献   

19.

Background

The rs1990760 polymorphism of interferon induced with helicase C domain 1 (IFIH1) has been associated with type 1 diabetes mellitus (T1DM). Here, we investigated whether this polymorphism is associated with T1DM or its clinical characteristics in a Brazilian population, and if IFIH1 gene expression in mononuclear cells from T1DM patients differs according to the genotypes of this polymorphism. A meta-analysis was also conducted to evaluate if the rs1990760 polymorphism is associated with T1DM.

Methods

Frequencies of the rs1990760 polymorphism were analyzed in 527 T1DM patients and in 517 healthy subjects. IFIH1 gene expressions according to genotypes were measured in a sub-sample of 26 T1DM patients by quantitative real-time PCR.

Results

Our data show the association of the A allele with risk to T1DM under a dominant model of inheritance [odds ratio (OR) = 1.421, P = 0.037], adjusting for ethnicity. The meta-analysis revealed significant association between the rs199760A allele and risk for T1DM for all analyzed inheritance models. Surprisingly, T1DM patients carrying the A allele showed lower levels of systolic (P = 0.001) and diastolic (P = 1×10−10) blood pressures as compared to G/G carriers. Furthermore, the A/A genotype seems to be associated with protection to arterial hypertension (AH) after adjustment for covariates (OR = 0.339, P = 0.019). IFIH1 gene expression in mononuclear cells from 26 T1DM patients did not differ among genotypes (P = 0.274). Nevertheless, IFIH1 gene expression was increased in mononuclear cells from T1DM patients with AH as compared with T1DM patients without AH [6.7 (1.7–2.0) vs. 1.8 (1.3–7.1) arbitrary units; P = 0.036]. The association with blood pressures and AH was not observed in patients with type 2 diabetes mellitus.

Conclusions

Our results indicate that the rs1990760 polymorphism is associated with T1DM. Interestingly, the rs1990760 A allele seems to be associated with protection for AH in T1DM patients. Further studies are needed to confirm the association with AH.  相似文献   

20.
In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA microarray was applied to determine the genes that were regulated directly or indirectly by miR-183. 3′UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3′UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3′UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号