首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 585 毫秒
1.
Endocrine functions of bile acids   总被引:11,自引:0,他引:11       下载免费PDF全文
Bile acids (BAs), a group of structurally diverse molecules that are primarily synthesized in the liver from cholesterol, are the chief components of bile. Besides their well-established roles in dietary lipid absorption and cholesterol homeostasis, it has recently emerged that BAs are also signaling molecules, with systemic endocrine functions. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor TGR5, and activate nuclear hormone receptors such as farnesoid X receptor alpha. Through activation of these diverse signaling pathways, BAs can regulate their own enterohepatic circulation, but also triglyceride, cholesterol, energy, and glucose homeostasis. Thus, BA-controlled signaling pathways are promising novel drug targets to treat common metabolic diseases, such as obesity, type II diabetes, hyperlipidemia, and atherosclerosis.  相似文献   

2.
Bile acids (BAs) are cholesterol metabolites that have been extensively studied these last decades. BAs have been classified in two groups. Primary BAs are synthesized in liver, when secondary BAs are produced by intestinal bacteria. Recently, next to their ancestral roles in digestion and fat solubilization, BAs have been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor FXRα or of the G-protein-coupled receptor TGR5. These two receptors have selective affinity to different types of BAs and show different expression patterns, leading to different described roles of BAs. It has been suggested for long that BAs could be molecules linked to tumor processes. Indeed, as many other molecules, regarding analyzed tissues, BAs could have either protective or pro-carcinogen activities. However, the molecular mechanisms responsible for these effects have not been characterized yet. It involves either chemical properties or their capacities to activate their specific receptors FXRα or TGR5. This review highlights and discusses the potential links between BAs and cancer diseases and the perspectives of using BAs as potential therapeutic targets in several pathologies.  相似文献   

3.
胆汁酸功能及其与肠道细菌相互关系   总被引:1,自引:0,他引:1  
胆汁酸具有多种重要生理功能. 近年研究发现,胆汁酸可作为信号分子与褐色脂肪细胞表面受体TGR5结合,可激活法尼酯衍生物X受体(nuclear receptor farnesoid X receptor, FXR)的表达. 通过激活这些不同的信号传导途径,胆汁酸可以分别起到调节体内能量代谢平衡、控制肥胖以及抑制肠道细菌过度增殖的作用. 胆汁酸与人及动物肠道细菌具有复杂的相互关系:肠道细菌对于胆汁酸的转化很重要,除了在胆汁酸的转化中发挥重要作用外,肠道微生物菌群还可以十分有效地水解已被胆汁酸清除的生物体内结合寄生物或异源物质,促进这些物质的活化或肠肝循环. 宿主拥有一些抑制细菌过度增殖的机制,这些机制包括快速转运以及利用抗菌肽、蛋白水解肽和胆汁酸等进行抑菌;而有些肠道细菌在进化中形成一些抗性机制可避免胆汁酸胁迫. 本文主要就胆汁酸控制肥胖以及抑制细菌过度增殖的机制和胆汁酸与肠道细菌相互关系进行了综述.  相似文献   

4.
Bile acids (BAs) are recently recognized key signaling molecules that control integrative metabolism and energy expenditure. BAs activate multiple signaling pathways, including those of nuclear receptors, primarily farnesoid X receptor (FXR), membrane BA receptors, and FXR-induced FGF19 to regulate the fed-state metabolism. Small heterodimer partner (SHP) has been implicated as a key mediator of these BA signaling pathways by recruitment of chromatin modifying proteins, but the key question of how SHP transduces BA signaling into repressive histone modifications at liver metabolic genes remains unknown. Here we show that protein kinase Cζ (PKCζ) is activated by BA or FGF19 and phosphorylates SHP at Thr-55 and that Thr-55 phosphorylation is critical for the epigenomic coordinator functions of SHP. PKCζ is coimmunopreciptitated with SHP and both are recruited to SHP target genes after bile acid or FGF19 treatment. Activated phosphorylated PKCζ and phosphorylated SHP are predominantly located in the nucleus after FGF19 treatment. Phosphorylation at Thr-55 is required for subsequent methylation at Arg-57, a naturally occurring mutation site in metabolic syndrome patients. Thr-55 phosphorylation increases interaction of SHP with chromatin modifiers and their occupancy at selective BA-responsive genes. This molecular cascade leads to repressive modifications of histones at metabolic target genes, and consequently, decreased BA pools and hepatic triglyceride levels. Remarkably, mutation of Thr-55 attenuates these SHP-mediated epigenomic and metabolic effects. This study identifies PKCζ as a novel key upstream regulator of BA-regulated SHP function, revealing the role of Thr-55 phosphorylation in epigenomic regulation of liver metabolism.  相似文献   

5.
Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells.  相似文献   

6.
Bile acids (BAs) are steroid acids found predominantly in the bile of mammals and other vertebrates. Though BAs have been known as digestive juice, recent studies have revealed that BAs act as signaling molecules to control metabolism and inflammation. Today, BAs are considered as potential therapeutic molecules for treatment of complex metabolic liver disease. However, the detergent properties of BAs lead to hepatic injury and intrahepatic cholestasis when BAs are accumulated in the liver with impaired bile flow into gall bladder. Cholestasis is a pathological condition of hepatic retention of cytotoxic bile acids. To date, hydrophilic ursodeoxycholic acid has been currently used to treat cholestasis, but the efficacy of UDCA for cholestasis is still limited. Given that BAs are endogenous ligands of several nuclear receptors, including Farnesoid X receptor and Pregnane X receptor, novel synthetic ligands for those nuclear receptors are promising for the treatment of cholestatic liver diseases.  相似文献   

7.
Farnesoid X receptor α (FXRα) as a bile acid sensor plays potent roles in multiple metabolic processes, and its antagonist has recently revealed special interests in the treatment of metabolic disorders, although the underlying mechanisms still remain unclear. Here, we identified that the small molecule N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide (NDB) functioned as a selective antagonist of human FXRα (hFXRα), and the crystal structure of hFXRα ligand binding domain (hFXRα-LBD) in complex with NDB was analyzed. It was unexpectedly discovered that NDB induced rearrangements of helix 11 (H11) and helix 12 (H12, AF-2) by forming a homodimer of hFXRα-LBD, totally different from the active conformation in monomer state, and the binding details were further supported by the mutation analysis. Moreover, functional studies demonstrated that NDB effectively antagonized the GW4064-stimulated FXR/RXR interaction and FXRα target gene expression in primary mouse hepatocytes, including the small heterodimer partner (SHP) and bile-salt export pump (BSEP); meanwhile, administration of NDB to db/db mice efficiently decreased the gene expressions of phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6-pase), small heterodimer partner, and BSEP. It is expected that our first analyzed crystal structure of hFXRα-LBD·NDB will help expound the antagonistic mechanism of the receptor, and NDB may find its potential as a lead compound in anti-diabetes research.  相似文献   

8.
The C terminus of G protein-coupled receptors (GPCRs) is important for G protein-coupling and activation; in addition, sorting motifs have been identified in the C termini of several GPCRs that facilitate correct trafficking from the endoplasmic reticulum to the plasma membrane. The C terminus of the GPCR TGR5 lacks any known sorting motif such that other factors must determine its trafficking. Here, we investigate deletion and substitution variants of the membrane-proximal C terminus of TGR5 with respect to plasma membrane localization and function using immunofluorescence staining, flow cytometry, and luciferase assays. Peptides of the membrane-proximal C-terminal variants are subjected to molecular dynamics simulations and analyzed with respect to their secondary structure. Our results reveal that TGR5 plasma membrane localization and responsiveness to extracellular ligands is fostered by a long (≥ 9 residues) α-helical stretch at the C terminus, whereas the presence of β-strands or only a short α-helical stretch leads to retention in the endoplasmic reticulum and a loss of function. As a proof-of-principle, chimeras of TGR5 containing the membrane-proximal amino acids of the β2 adrenergic receptor (β2AR), the sphingosine 1-phosphate receptor-1 (S1P1), or the κ-type opioid receptor (κOR) were generated. These TGR5β2AR, TGR5S1P1, or TGR5κOR chimeras were correctly sorted to the plasma membrane. As the exchanged amino acids of the β2AR, the S1P1, or the κOR form α-helices in crystal structures but lack significant sequence identity to the respective TGR5 sequence, we conclude that the secondary structure of the TGR5 membrane-proximal C terminus is the determining factor for plasma membrane localization and responsiveness towards extracellular ligands.  相似文献   

9.
TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.  相似文献   

10.
胆汁酸作为一种信号分子通过激活肝、肠道和外周组织中的胆汁酸受体影响体内葡萄糖和脂质的代谢平衡,对于调节肥胖、2型糖尿病和非酒精性脂肪肝等代谢性疾病具有非常重要的意义。胆汁酸与相应核受体,如法尼醇X受体(farnesoid X receptor, FXR)和Takeda G蛋白偶联受体5 (Takeda G protein-coupled receptor 5,TGR5)的相互作用影响了这些代谢性疾病。FXR主要通过影响胆汁酸的合成及转运对非酒精性脂肪肝发挥作用,TGR5则是间接增加褐色脂肪组织中的生热作用,改善肥胖和2型糖尿病。这些调控机制的研究是非常必要的。本文综述了胆汁酸代谢及其对代谢性疾病调控的分子机制的研究进展,以期为科研工作者提供一定的参考。  相似文献   

11.
12.
TGR5 is a member of the G protein-coupled receptor family and is activated by bile acids (BAs). TGR5 is thought to be a promising drug target for metabolic diseases because the activation of TGR5 prevents obesity and hyperglycemia in mice fed a high-fat diet (HFD). In the present study, we identified a naturally occurring limonoid, nomilin, as an activator of TGR5. Unlike BAs, nomilin did not exhibit the farnesoid X receptor ligand activity. Although the nomilin derivative obacunone was capable of activating TGR5, limonin (the most abundant limonoid in citrus seeds) was not a TGR5 activator. When male C57BL/6J mice fed a HFD for 9 weeks were further fed a HFD either alone or supplemented with 0.2% w/w nomilin for 77 days, nomilin-treated mice had lower body weight, serum glucose, serum insulin, and enhanced glucose tolerance. Our results suggest a novel biological function of nomilin as an agent having anti-obesity and anti-hyperglycemic effects that are likely to be mediated through the activation of TGR5.  相似文献   

13.
14.

Background & Aims

Bile acids (BAs) regulate energy expenditure by activating G-protein Coupled Bile Acid Receptor Gpbar1/TGR5 by cAMP-dependent mechanisms. Cholecystectomy (XGB) increases BAs recirculation rates resulting in increased tissue exposure to BAs during the light phase of the diurnal cycle in mice. We aimed to determine: 1) the effects of XGB on basal metabolic rate (BMR) and 2) the roles of TGR5 on XGB-dependent changes in BMR.

Methods

BMR was determined by indirect calorimetry in wild type and Tgr5 deficient (Tgr5-/-) male mice. Bile flow and BAs secretion rates were measured by surgical diversion of biliary duct. Biliary BAs and cholesterol were quantified by enzymatic methods. BAs serum concentration and specific composition was determined by liquid chromatography/tandem mass spectrometry. Gene expression was determined by qPCR analysis.

Results

XGB increased biliary BAs and cholesterol secretion rates, and elevated serum BAs concentration in wild type and Tgr5-/- mice during the light phase of the diurnal cycle. BMR was ~25% higher in cholecystectomized wild type mice (p <0.02), whereas no changes were detected in cholecystectomized Tgr5-/- mice compared to wild-type animals.

Conclusion

XGB increases BMR by TGR5-dependent mechanisms in mice.  相似文献   

15.
Abstract

TGR5 is the G-protein–coupled bile acid-activated receptor, found in many human and animal tissues. Considering different endocrine and paracrine functions of bile acids, the current review focuses on the role of TGR5 as a novel pharmacological target in the metabolic syndrome and related disorders, such as diabetes, obesity, atherosclerosis, liver diseases and cancer. TGR5 ligands improve insulin sensitivity and glucose homeostasis through the secretion of incretins. The bile acid/TGR5/cAMP signaling pathway increases energy expenditure in brown adipose tissue and skeletal muscle. Activation of TGR5 in macrophages inhibits production of proinflammatory cytokines and attenuates the development of atherosclerosis. This receptor has been detected in many cell types of the liver where it has anti-inflammatory effects, thus reducing liver steatosis and damage. TGR5 also modulates hepatic microcirculation and fluid secretion in the biliary tree. In cell culture models TGR5 has been linked to signaling pathways involved in metabolism, cell survival, proliferation and apoptosis, which suggest a possible role of TGR5 in cancer development. Despite the fact that TGR5 ligands may represent novel drugs for prevention and treatment of different aspects of the metabolic syndrome, clinical studies are awaited with the perspective that they will complete TGR5 biology and identify efficient and safe TGR5 agonists.  相似文献   

16.
The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

17.
18.
As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, PPARγ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that PPARγ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of PPARγ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of PPARγ. [BMB Reports 2014; 47(11): 599-608]  相似文献   

19.
20.
Given the significant increases in the incidence of metabolic diseases, efficient strategies for preventing and treating of these common disorders are urgently needed. This includes the development of phytopharmaceutical products or functional foods to prevent or cure metabolic diseases. Plant extracts from edible biomaterial provide a potential resource of structurally diverse molecules that can synergistically interfere with complex disorders. In this study we describe the safe application of ethanolic chamomile (Matricaria recutita) flowers extract (CFE) for the treatment and prevention of type 2 diabetes and associated disorders. We show in vitro that this extract activates in particular nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) and its isotypes. In a cellular context, in human primary adipocytes CFE administration (300 µg/ml) led to specific expression of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected expression changes of genes that were regulated by PPARα. In vivo treatment of insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d) for 6 weeks considerably reduced insulin resistance, glucose intolerance, plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20 weeks showed effective prevention of fatty liver formation and hepatic inflammation, indicating additionally hepatoprotective effects of the extract. Moreover, CFE treatment did not reveal side effects, which have otherwise been associated with strong synthetic PPAR-targeting molecules, such as weight gain, liver disorders, hemodilution or bone cell turnover. Taken together, modulation of PPARs and other factors by chamomile flowers extract has the potential to prevent or treat type 2 diabetes and related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号