首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

This study evaluated the cytotoxic activity of extracts from Caesalpinia sappan heartwood against multiple cancer cell lines using an MTT cell viability assay. The cell death though induction of apoptosis was as indicated by DNA fragmentation and caspase-3 enzyme activation.

Results

A methanol extract from C. sappan (MECS) showed cytotoxic activity against several of the cancer cell lines. The most potent activity exhibited by the MECS was against HeLa cells with an IC50 value of 26.5 ± 3.2 μg/mL. Treatment of HeLa cells with various MECS concentrations resulted in growth inhibition and induction of apoptosis, as indicated by DNA fragmentation and caspase-3 enzyme activation.

Conclusion

This study is the first report of the anticancer properties of the heartwood of C. sappan native to Vietnam. Our findings demonstrate that C. sappan heartwood may have beneficial applications in the field of anticancer drug discovery.  相似文献   

2.
3.
N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-d-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-d-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-d-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117 ± 2 U mg−1 at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess.  相似文献   

4.
Two new aromatic compounds structurally related to brazilin were isolated and identified from the heartwood of Caesalpinia sappan. They possessed antihypercholesteremic activity.  相似文献   

5.
N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal.  相似文献   

6.
7.
Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell−1 h−1 and nitrification rates of 2.6±0.5 fmol NO2 cell−1 h−1 were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In 15N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.  相似文献   

8.
S Neale 《Mutation research》1972,14(2):155-164
N-Nitroso-N-methylurea (NMU) and N-nitroso-N-ethylurea (NEU) induced reversions in four mutant auxotropic strains of E. coli. Among other nitroso compounds tested only N-methyl-N′-nitro-N-nitrosoguanidine (MNG) was an active mutagen in the system used.  相似文献   

9.
10.
An Wang 《Carbohydrate research》2010,345(9):1216-7185
We describe here the synthesis of two oligosaccharide fragments of the tumor associated carbohydrate antigen LeaLex. While the linear lacto-N-triose I: β-d-Galp-(1→4)-β-d-GlcNAcp-(1→3)-β-d-Galp-OMe is a known compound, this is the first reported preparation of the branched tetrasaccharide β-d-GlcNAcp-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-β-d-GlcNAcp-OMe. Our synthetic schemes involved using an N-trichloroacetylated trichloroacetimidate glucosaminyl donor activated with excess TMSOTf at 0 °C for glycosylation at O-3 of galactosyl residues and that of trichloroacetimidate galactosyl donors activated with excess BF3·OEt2 to glycosylate either O-3 or O-4 of glucosamine residues. The fucosylation at O-3 of the glucosamine acceptor was accomplished using a thiofucoside donor activated with copper(II) bromide and tetrabutylammonium bromide. Thus, syntheses of the protected tri- and tetrasaccharides were achieved easily and efficiently using known building blocks. Of particular interest, we also report that these protected oligosaccharides were submitted to dissolving metal conditions (Na-NH3) to provide in one single step the corresponding deprotected compounds. Under these conditions all protecting groups (O-acyl, benzylidene, benzyl, and N-trichloroacetyl) were efficiently cleaved. The work-up procedure for such reactions usually involves quenching with excess methanol and then neutralization with acetic acid. In our work the neutralization was carried out using acetic anhydride rather than acetic acid to ensure N-acetylation of the glucosamine residue. Both fully deprotected compounds were then simply purified and desalted by gel permeation chromatography on a Biogel P2 column eluted with water.  相似文献   

11.
12.
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.  相似文献   

13.

Background

Brazilin, isolated from the heartwood of Caesalpinia sappan L., has been shown to possess multiple pharmacological properties.

Methods

In this study, platelet aggregation, flow cytometry, immunoblotting analysis, and electron spin resonance (ESR) spectrometry were used to investigate the effects of brazilin on platelet activation ex vivo. Moreover, fluorescein sodium-induced platelet thrombi of mesenteric microvessels was also used in in vivo study.

Results

We demonstrated that relatively low concentrations of brazilin (1 to 10 μM) potentiated platelet aggregation induced by collagen (0.1 μg/ml) in washed human platelets. Higher concentrations of brazilin (20 to 50 μM) directly triggered platelet aggregation. Brazilin-mediated platelet aggregation was slightly inhibited by ATP (an antagonist of ADP). It was not inhibited by yohimbine (an antagonist of epinephrine), by SCH79797 (an antagonist of thrombin protease-activated receptor [PAR] 1), or by tcY-NH2 (an antagonist of PAR 4). Brazilin did not significantly affect FITC-triflavin binding to the integrin αIIbβ3 in platelet suspensions. Pretreatment of the platelets with caffeic acid phenethyl ester (an antagonist of collagen receptors) or JAQ1 and Sam.G4 monoclonal antibodies raised against collagen receptor glycoprotein VI and integrin α2β1, respectively, abolished platelet aggregation stimulated by collagen or brazilin. The immunoblotting analysis showed that brazilin stimulated the phosphorylation of phospholipase C (PLC)γ2 and Lyn, which were significantly attenuated in the presence of JAQ1 and Sam.G4. In addition, brazilin did not significantly trigger hydroxyl radical formation in ESR analysis. An in vivo mouse study showed that brazilin treatment (2 and 4 mg/kg) significantly shortened the occlusion time for platelet plug formation in mesenteric venules.

Conclusion

To the best of our knowledge, this study provides the first evidence that brazilin acts a novel collagen receptor agonist. Brazilin is a plant-based natural product, may offer therapeutic potential as intended anti-thrombotic agents for targeting of collagen receptors or to be used a useful tool for the study of detailed mechanisms in collagen receptors-mediated platelet activation.  相似文献   

14.
Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to produce 1-methylnicotinamide (MeN). We have previously shown that NNMT expression protected against neurotoxin-mediated cell death by increasing Complex I (CxI) activity, resulting in increased ATP synthesis. This was mediated via protection of the NDUFS3 subunit of CxI from degradation by increased MeN production. In the present study, we have investigated the effects of NNMT expression on neurone morphology and differentiation. Expression of NNMT in SH-SY5Y human neuroblastoma and N27 rat mesencephalic dopaminergic neurones increased neurite branching, synaptophysin expression and dopamine accumulation and release. siRNA gene silencing of ephrin B2 (EFNB2), and inhibition of Akt phosphorylation using LY294002, demonstrated that their sequential activation was responsible for the increases observed. Incubation of SH-SY5Y with increasing concentrations of MeN also increased neurite branching, suggesting that the effects of NNMT may be mediated by MeN. NNMT had no significant effect on the expression of phenotypic and post-mitotic markers, suggesting that NNMT is not involved in determining phenotypic fate or differentiation status. These results demonstrate that NNMT expression regulates neurone morphology in vitro via the sequential activation of the EFNB2 and Akt cellular signalling pathways.  相似文献   

15.
In the search for new therapeutic tools against tuberculosis two novel iron complexes, [Fe(L-H)3], with 3-aminoquinoxaline-2-carbonitrile N1,N4-dioxide derivatives (L) as ligands, were synthesized, characterized by a combination of techniques, and in vitro evaluated. Results were compared with those previously reported for two analogous iron complexes of other ligands of the same family of quinoxaline derivatives. In addition, the complexes were studied by cyclic voltammetry and EPR spectroscopy. Cyclic voltammograms of the iron compounds showed several cathodic processes which were attributed to the reduction of the metal center (Fe(III)/Fe(II)) and the coordinated ligand. EPR signals were characteristic of magnetically isolated high-spin Fe(III) in a rhombic environment and arise from transitions between mS = ± 1/2 (geff ~ 9) or mS = ± 3/2 (geff ~ 4.3) states. Mössbauer experiments showed hyperfine parameters that are typical of high-spin Fe(III) ions in a not too distorted environment. The novel complexes showed in vitro growth inhibitory activity on Mycobacterium tuberculosis H37Rv (ATCC 27294), together with very low unspecific cytotoxicity on eukaryotic cells (cultured murine cell line J774). Both complexes showed higher inhibitory effects on M. tuberculosis than the “second-line” therapeutic drugs.  相似文献   

16.
A series of six 3,6-bis(imidazolium-3-yl)pyridazine derivatives with different imidazole-N substituents have been synthesized and isolated as the salts [H2L]Cl2 (1a)-(6a) and [H2L](PF6)2 (1b)-(6b). Solid state structures have been determined crystallographically for eleven out of the twelve compounds, revealing diverse hydrogen bonding patterns that involve the imidazolium-C2H units and the anions. N-heterocyclic carbene (NHC) mercury(II) complexes [Hg2L2](PF6)4 (7)-(9) are readily formed in good yields from ligand precursors [H2L](PF6)2 and Hg(OAc)2, as long as imidazole-N substituents are not too bulky. X-ray crystallography reveals double helical bimetallic arrangements for the stable [Hg2L2]4+ cations. Ligand scrambling in [Hg2L2]4+ occurs only in the presence of free carbene precursor, presumably via an associative mechanism.  相似文献   

17.

Background and Aims

Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca).

Methods

Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA).

Key Results

Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner.

Conclusions

The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing ca influences ecosystem water use.  相似文献   

18.
Wang H  Zhang W  Zhao J  Zhang L  Liu M  Yan G  Yao J  Yu H  Yang P 《Journal of Proteomics》2012,75(4):1375-1385
The membrane glycoprotein CD82 (KAI1) has attracted increasing attention as a suppressor of cell migration, related tumor invasion, as well as metastasis. The glycosylation of CD82 has been shown to be involved in a correlative cell adhesion and motility. However, the N-glycosylation pattern of CD82 has not been described yet. In the current study, a detailed characterization of the recombinant human CD82 N-linked glycosylation pattern was conducted by employing an integrative proteomic and glycomic approach, including glycosidase and protease digestions, glycan permethylation, MS analyses, site-directed mutagenesis, and lectin blots. The results reveal three N-glycosylation sites, and further demonstrate a putative glycosylation site at Asn157 for the first time. A highly heterogeneous pattern of N-linked glycans is described, which express distinct carbohydrate epitopes, such as bisecting N-acetylglucosamine, (α-2,6) N-acetylneuraminic acid, and core fucose. These epitopes are highly associated with various biological functions, including cell adhesion and cancer metastasis, and can possibly influence the anti-cancer inhibition ability of CD82.  相似文献   

19.
Chitinases hydrolyze chitin, an insoluble linear polymer of N-acetyl-d-glucosamine (NAG)n, into nutrient sources. Bacillus cereus NCTU2 chitinase (ChiNCTU2) predominantly produces chitobioses and belongs to glycoside hydrolase family 18. The crystal structure of wild-type ChiNCTU2 comprises only a catalytic domain, unlike other chitinases that are equipped with additional chitin binding and insertion domains to bind substrates into the active site. Lacking chitin binding and chitin insertion domains, ChiNCTU2 utilizes two dynamic loops (Gly-67—Thr-69 and Ile-106–Val-112) to interact with (NAG)n, generating novel substrate binding and distortion for catalysis. Gln-109 is crucial for direct binding with substrates, leading to conformational changes of two loops with a maximum shift of ∼4.6 Å along the binding cleft. The structures of E145Q, E145Q/Y227F, and E145G/Y227F mutants complexed with (NAG)n reveal (NAG)2, (NAG)2, and (NAG)4 in the active site, respectively, implying various stages of reaction: before hydrolysis, E145G/Y227F with (NAG)4; in an intermediate state, E145Q/Y227F with a boat-form NAG at the −1 subsite, −1-(NAG); after hydrolysis, E145Q with a chair form −1-(NAG). Several residues were confirmed to play catalytic roles: Glu-145 in cleavage of the glycosidic bond between −1-(NAG) and +1-(NAG); Tyr-227 in the conformational change of −1-(NAG); Asp-143 and Gln-225 in stabilizing the conformation of −1-(NAG). Additionally, Glu-190 acts in the process of product release, and Tyr-193 coordinates with water for catalysis. Residues Asp-143, E145Q, Glu-190, and Tyr-193 exhibit multiple conformations for functions. The inhibitors zinc ions and cyclo-(l-His-l-Pro) are located at various positions and confirm the catalytic-site topology. Together with kinetics analyses of related mutants, the structures of ChiNCTU2 and its mutant complexes with (NAG)n provide new insights into its substrate binding and the mechanistic action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号