首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S–S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.  相似文献   

2.
Diatoms are photosynthetic microalgae that fix a significant fraction of the world’s carbon. Because of their photosynthetic efficiency and high-lipid content, diatoms are priority candidates for biofuel production. Here, we report that sporulating Bacillus thuringiensis and other members of the Bacillus cereus group, when in co-culture with the marine diatom Phaeodactylum tricornutum, significantly increase diatom cell count. Bioassay-guided purification of the mother cell lysate of B. thuringiensis led to the identification of two diketopiperazines (DKPs) that stimulate both P. tricornutum growth and increase its lipid content. These findings may be exploited to enhance P. tricornutum growth and microalgae-based biofuel production. As increasing numbers of DKPs are isolated from marine microbes, the work gives potential clues to bacterial-produced growth factors for marine microalgae.  相似文献   

3.
4.
The marine diatom Phaeodactylum tricornutum is attracting considerable interest as a candidate for biofuel production due to its fast growth and high lipid content. Nitrogen deficiency can increase the lipid content in certain microalgae species, including P. tricornutum. However, the molecular basis of such changes remains unclear without analyzing metabolism at the proteomic level. We attempted to systematically analyze protein expression level changes of P. tricornutum upon N deprivation. We observed translational level changes that could overall redirect the metabolic network from carbon flux towards lipid accumulation. N deprivation led to an increase in the expression of genes involved in nitrogen assimilation and fatty acid biosynthesis and a concomitant decrease in photosynthesis and lipid catabolism enzymes. These molecular level changes are consistent with the observed physiological changes, e.g., in photosynthesis rate and saturated lipid content. Our results provide information at the proteomic level of the key enzymes involved in carbon flux towards lipid accumulation in P. tricornutum and suggest candidates for genetic manipulation in microalgae breeding for biodiesel production.  相似文献   

5.
Microalgae have been used in food, cosmetic, and biofuel industries as a natural source of lipids, vitamins, pigments and antioxidants for a long time. Green microalgae, as potent photobioreactors, can be considered as an economical expression system to produce recombinant therapeutical proteins at large-scale due to low cost of production and scaling-up capitalization owning to the inexpensive medium requirement, fast growth rate, and the ease of manipulation. These microalgae possess all benefit eukaryotic expression systems including the ability of post-translational modifications required for proper folding and stability of active proteins. Among the many items regarded as recombinant protein production, this review compares the different expression systems with green microalgae like Dunaliella by viewing the nuclear/chloroplast transformation challenges/benefits, related selection markers/reporter genes, and crucial factors/strategies affecting the increase of foreign protein expression in microalgae transformants. Some important factors were discussed regarding the increase of protein yielding in microalgae transformants including: transformation-associated genotypic modifications, endogenous regulatory factors, promoters, codon optimization, enhancer elements, and milking of recombinant protein.  相似文献   

6.
Yeast Pichia pastoris is a widely used system for heterologous protein expression. However, post-translational modifications, especially glycosylation, usually impede pharmaceutical application of recombinant proteins because of unexpected alterations in protein structure and function. The aim of this study was to identify glycosylation sites on recombinant human platelet-derived growth factor-BB (rhPDGF-BB) secreted by P. pastoris, and investigate possible effects of O-linked glycans on PDGF-BB functional activity. PDGF-BB secreted by P. pastoris is very heterogeneous and contains multiple isoforms. We demonstrated that PDGF-BB was O-glycosylated during the secretion process and detected putative O-glycosylation sites using glycosylation staining and immunoblotting. By site-directed mutagenesis and high-resolution LC/MS analysis, we, for the first time, identified two threonine residues at the C-terminus as the major O-glycosylation sites on rhPDGF-BB produced in P. pastoris. Although O-glycosylation resulted in heterogeneous protein expression, the removal of glycosylation sites did not affect rhPDGF-BB mitogenic activity. In addition, the unglycosylated PDGF-BBΔGly mutant exhibited the immunogenicity comparable to that of the wild-type form. Furthermore, antiserum against PDGF-BBΔGly also recognized glycosylated PDGF-BB, indicating that protein immunogenicity was unaltered by glycosylation. These findings elucidate the effect of glycosylation on PDGF-BB structure and biological activity, and can potentially contribute to the design and production of homogeneously expressed unglycosylated or human-type glycosylated PDGF-BB in P. pastoris for pharmaceutical applications.  相似文献   

7.
Diatoms (Bacillarophyceae) are photosynthetic unicellular microalgae that have risen to ecological prominence in oceans over the past 30 million years. They are of interest as potential feedstocks for sustainable biofuels. Maximizing production of these feedstocks will require genetic modifications and an understanding of algal metabolism. These processes may benefit from genome‐scale models, which predict intracellular fluxes and theoretical yields, as well as the viability of knockout and knock‐in transformants. Here we present a genome‐scale metabolic model of a fully sequenced and transformable diatom: Phaeodactylum tricornutum. The metabolic network was constructed using the P. tricornutum genome, biochemical literature, and online bioinformatic databases. Intracellular fluxes in P. tricornutum were calculated for autotrophic, mixotrophic and heterotrophic growth conditions, as well as knockout conditions that explore the in silico role of glycolytic enzymes in the mitochondrion. The flux distribution for lower glycolysis in the mitochondrion depended on which transporters for TCA cycle metabolites were included in the model. The growth rate predictions were validated against experimental data obtained using chemostats. Two published studies on this organism were used to validate model predictions for cyclic electron flow under autotrophic conditions, and fluxes through the phosphoketolase, glycine and serine synthesis pathways under mixotrophic conditions. Several gaps in annotation were also identified. The model also explored unusual features of diatom metabolism, such as the presence of lower glycolysis pathways in the mitochondrion, as well as differences between P. tricornutum and other photosynthetic organisms.  相似文献   

8.
Microalgae have previously been reported to contain β-N-methylamino-l-alanine (BMAA), and the global presence of these primary producers has been associated with the widespread occurrence of BMAA in marine organisms. It has been repeatedly shown that filter-feeding bivalves accumulate phytoplankton species and their toxins. In this study, the concentrations of total soluble BMAA and DAB as a function of growth phase were observed for four non-axenic diatom species (i.e. Phaeodactylum tricornutum, Chaetoceros sp., Chaetoceros calcitrans and Thalassiosira pseudonana). These strains had previously been shown to contain BMAA using a highly selective HILIC-MS/MS method. BMAA cell quota appeared to be species-specific, however, highest BMAA concentrations were always obtained during the stationary growth phase, for all four species, suggesting that BMAA is a secondary metabolite. While DAB was detected in a bacterial culture isolated from a culture of P. tricornutum, the presence or absence of a bacterial population did not influence production of BMAA and DAB by P. tricornutum, i.e. no significant difference was noted for BMAA and DAB production between axenic and non-axenic cultures. The presence of DAB in bacteria had previously been shown, and raised the question as to whether DAB observed in many species of microalgae may arise from the non-axenic culture conditions or from the microalgae themselves.  相似文献   

9.
Over the years, several vectors and host strains have been constructed to improve the overexpression of recombinant proteins in Escherichia coli. More recently, attention has focused on the co-expression of genes in E. coli, either by means of a single vector or by cotransformation with multiple compatible plasmids. Co-expression was initially designed to generate protein complexes in vivo, and later served to extend the use of E. coli as a platform for the production of heterologous proteins. This review shows how the co-expression of genes in E. coli is challenging the production of protein complexes and proteins bearing post-translational modifications or unnatural amino acids. In addition, the importance of co-expression to achieve efficient secretion of recombinant proteins in E. coli is discussed, with recent insights into the use of co-expression to overproduce membrane proteins.  相似文献   

10.
11.
In response to the successful use of monoclonal antibodies (mAbs) in the treatment of various diseases, systems for expressing recombinant mAbs using transgenic animals or plants have been widely developed. The silkworm (Bombyx mori) is a highly domesticated insect that has recently been used for the production of recombinant proteins. Because of their cost-effective breeding and relatively easy production scale-up, transgenic silkworms show great promise as a novel production system for mAbs. In this study, we established a transgenic silkworm stably expressing a human-mouse chimeric anti-CD20 mAb having the same amino acid sequence as rituximab, and compared its characteristics with rituximab produced by Chinese hamster ovary (CHO) cells (MabThera®). The anti-CD20 mAb produced in the transgenic silkworm showed a similar antigen-binding property, but stronger antibody-dependent cell-mediated cytotoxicity (ADCC) and weaker complement-dependent cytotoxicity (CDC) compared to MabThera. Post-translational modification analysis was performed by peptide mapping using liquid chromatography/mass spectrometry. There was a significant difference in the N-glycosylation profile between the CHO− and the silkworm-derived mAbs, but not in other post-translational modifications including oxidation and deamidation. The mass spectra of the N-glycosylated peptide revealed that the observed biological properties were attributable to the characteristic N-glycan structures of the anti-CD20 mAbs produced in the transgenic silkworms, i.e., the lack of the core-fucose and galactose at the non-reducing terminal. These results suggest that the transgenic silkworm may be a promising expression system for the tumor-targeting mAbs with higher ADCC activity.  相似文献   

12.
Hyperglycosylated proteins are more stable, show increased serum half-life and less sensitivity to proteolysis compared to non-sialylated forms. This applies particularly to recombinant human erythropoietin (rhEPO). Recent progress in N-glycoengineering of non-mammalian expression hosts resulted in in vivo protein sialylation at great homogeneity. However the synthesis of multi-sialylated N-glycans is so far restricted to mammalian cells. Here we used a plant based expression system to accomplish multi-antennary protein sialylation. A human erythropoietin fusion protein (EPOFc) was transiently expressed in Nicotiana benthamiana ΔXTFT, a glycosylation mutant that lacks plant specific N-glycan residues. cDNA of the hormone was co-delivered into plants with the necessary genes for (i) branching (ii) β1,4-galactosylation as well as for the (iii) synthesis, transport and transfer of sialic acid. This resulted in the production of recombinant EPOFc carrying bi- tri- and tetra-sialylated complex N-glycans. The formation of this highly complex oligosaccharide structure required the coordinated expression of 11 human proteins acting in different subcellular compartments at different stages of the glycosylation pathway. In vitro receptor binding assays demonstrate the generation of biologically active molecules. We demonstrate the in planta synthesis of one of the most complex mammalian glycoforms pointing to an outstanding high degree of tolerance to changes in the glycosylation pathway in plants.  相似文献   

13.
Within sustainable resource management, the recovery of nitrogen and phosphorus nutrients from waste streams is becoming increasingly important. Although the use of microalgae has been described extensively in environmental biotechnology, the potential of nitrate-accumulating microalgae for nutrient recovery has not been investigated yet. The ability of these marine microorganisms to concentrate environmental nitrate within their biomass is remarkable. The aim of this study was to investigate the application potential of nitrate-accumulating diatoms for nutrient recovery from marine wastewaters. The intracellular nitrate storage capacity was quantified for six marine diatom strains in synthetic wastewater. Amphora coffeaeformis and Phaeodactylum tricornutum stored the highest amount of nitrate with respectively 3.15 and 2.10 g N L?1 of cell volume, which accounted for 17.3 and 4.6 %, respectively, of the total nitrogen content. The growth and nitrate and phosphate uptake of both diatoms were further analyzed and based on these features P. tricornutum showed the highest potential for nutrient recovery. A mathematical model was developed which included intracellular nitrate storage and the kinetic parameters were derived for P. tricornutum. Furthermore, a simulation study was performed to compare the performance of a proposed microalgal nutrient recovery unit with a conventional denitrification system for marine wastewater treatment. Overall, this study demonstrates the potential application of P. tricornutum for saline wastewater treatment with concurrent nitrogen and phosphorus recycling.  相似文献   

14.
The effects of wavelengths of light-emitting diode (LED), nitrate concentration, and salt concentration were evaluated for the two-phase culture of the microalgal species Phaeodactylum tricornutum, Dunaliella tertiolecta, and Isochrysis galbana on cell growth and lipid production. Blue LEDs produced the highest biomass of P. tricornutum at a nitrate concentration of 8 mg/L, reaching 0.97 g dcw/L with a specific growth rate (μ) of 0.047 h−1, followed by I. galbana with 0.79 g dcw/L and μ = 0.040 h−1 and D. tertiolecta with 0.55 g dcw/L and μ = 0.028 h−1. Of the three microalgae, P. tricornutum had the highest specific growth rate of μmax = 0.070 h−1 and lowest saturation constant of Ks = 4.18 mg/L, resulting in fast cell growth. The highest lipid production was obtained under green LED wavelength stress on day 14, reaching 60.6% (w/w) of the dry cell weight among the three microalgae. The main fatty acids produced by the three microalgae were myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1), and arachidic acid (C20:0), which comprised 72.68%–84.16% (w/w) of the total fatty acids content under three stresses.  相似文献   

15.
Glycosyltransferases of the C superfamily (GT-Cs) are enzymes found in all domains of life. They catalyse the stepwise synthesis of oligosaccharides or the transfer of assembled glycans from lipid-linked donor substrates to acceptor proteins. The processes mediated by GT-Cs are required for C-, N- and O-linked glycosylation, all of which are essential post-translational modifications in higher-order eukaryotes. Until recently, GT-Cs were thought to share a conserved structural module of 7 transmembrane helices; however, recently determined GT-C structures revealed novel folds. Here we analyse the growing diversity of GT-C folds and discuss the emergence of two subclasses, termed GT-CA and GT-CB. Further substrate-bound structures are needed to facilitate a molecular understanding of glycan recognition and catalysis in these two subclasses.  相似文献   

16.
The microalgae Phaeodactylum tricornutum (PT) is known for its high content of omega-3 fatty acids, which are known to attenuate inflammation. Additionally, this microalga contains other nutrients such as carbohydrates, vitamins, proteins, and carotenoids and therefore could be of interest for animal and human nutrition. Here, we investigated the effects of hexane, ethanolic, and aqueous extracts on lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMCs) and on the murine macrophage cell line RAW 264.7. Further, the cytotoxicity of the extracts was studied using the MTT assay. The production of pro-inflammatory cytokines was significantly inhibited by the ethanolic and aqueous P. tricornutum extracts but not by the hexane extract. Both at the mRNA and at the protein levels, the aqueous extract inhibited LPS-induced IL-6, IL-1β, TNFα, and COX-2 expression and release by up to 96% (mRNA) and 79% (protein) in a dose-dependent manner. Compared to the aqueous extract, the ethanolic extract was less effective in cytokine inhibition. The production of nitric oxide in RAW 264.7 cells was significantly reduced by all extracts. We showed that the anti-inflammatory effect of P. tricornutum is exerted through inhibition of nuclear factor-κB activation and dependent on the mitogen-activated protein (MAP) kinase pathway. Our data indicate anti-inflammatory effects of the aqueous P. tricornutum extract and provide a basis information on the safety and potential health benefits of P. tricornutum usage for future animal and human nutrition.  相似文献   

17.
The chloroplast signal recognition particle 54 kDa (CpSRP54) protein is a member of the CpSRP pathway known to target proteins to thylakoid membranes in plants and green algae. Loss of CpSRP54 in the marine diatom Phaeodactylum tricornutum lowers the accumulation of a selection of chloroplast-encoded subunits of photosynthetic complexes, indicating a role in the co-translational part of the CpSRP pathway. In contrast to plants and green algae, absence of CpSRP54 does not have a negative effect on the content of light-harvesting antenna complex proteins and pigments in P. tricornutum, indicating that the diatom CpSRP54 protein has not evolved to function in the post-translational part of the CpSRP pathway. Cpsrp54 KO mutants display altered photophysiological responses, with a stronger induction of photoprotective mechanisms and lower growth rates compared to wild type when exposed to increased light intensities. Nonetheless, their phenotype is relatively mild, thanks to the activation of mechanisms alleviating the loss of CpSRP54, involving upregulation of chaperones. We conclude that plants, green algae, and diatoms have evolved differences in the pathways for co-translational and post-translational insertion of proteins into the thylakoid membranes.  相似文献   

18.
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.  相似文献   

19.
Glycosylation is one of the most complex post-translational modifications and may have significant influence on the proper function of the corresponding proteins. Bacteria and yeast are, because of easy handling and cost reasons, the most frequently used systems for recombinant protein expression. Bacteria generally do not glycosylate proteins and yeast might tend to hyperglycosylate. Insect cell- and mammalian cell-based expression systems are able to produce complex N-glycosylation structures but are more complex to handle and more expensive. The nonpathogenic protozoa Leishmania tarentolae is an easy-to-handle alternative expression system for production of proteins requiring the eukaryotic protein folding machinery and post-translational modifications. We used and evaluated the system for the secretory expression of extracellular domains from human glycoprotein VI and the receptor for advanced glycation end products from rat. Both proteins were well expressed and homogeneously glycosylated. Analysis of the glycosylation pattern identified the structure as the conserved core pentasaccharide Man3GlcNac2.  相似文献   

20.
Complex multimeric recombinant proteins such as therapeutic antibodies require a eukaryotic expression system. Transgenic plants may serve as promising alternatives to the currently favored mammalian cell lines or hybridomas. In contrast to prokaryotic systems, posttranslational modifications of plant and human proteins resemble each other largely, among those, protein N-glycosylation of the complex type. However, a few plant-specific sugar residues may cause immune reactions in humans, representing an obstacle for the broad use of plant-based systems as biopharmaceutical production hosts. The moss Physcomitrella patens represents a flexible tissue-culture system for the contained production and secretion of recombinant biopharmaceuticals in photobioreactors. The recent synthesis of therapeutic proteins as a scFv antibody fragment or the large and heavily modified complement regulator factor H demonstrate the versatility of this expression system. A uniquely efficient gene targeting mechanism can be employed to precisely engineer the glycosylation machinery for recombinant products. In this way, P. patens lines with non-immunogenic optimized glycan structures were created. Therapeutic antibodies produced in these strains exhibited antibody-dependent cellular cytotoxicity superior to the same molecules synthesized in mammalian cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号