首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
树木树液上升机理研究进展   总被引:8,自引:0,他引:8  
何春霞  李吉跃  郭明 《生态学报》2007,27(1):329-337
水分在植物体内的运输一直是很多植物生理生态学家所关注的一个重要问题。介绍了内聚力学说的基本假设和其存在争议,总结了近年来这一研究领域的几个热点问题,主要包括:(1)木质部栓塞及其恢复机理;(2)木质部压力探针和压力室法测定的木质部张力值不一致的现象及其可能原因;(3)补偿压学说;(4)不同界面层张力以及输水管道的毛细作用力、薄壁细胞膨压和木质部渗透压、逆向蒸腾等在树木汁液上升中的贡献;(5)最近发现的存在于木质部导管伴胞和韧皮部薄壁细胞等质膜中的水孔蛋白在植物水分运输中的调控作用等。这些方面在解释树木的树液上升中都起着重要的作用。  相似文献   

2.
王瑞庆  张莉  郭连金  朱海 《西北植物学报》2020,40(12):2157-2168
植物为适应陆地环境进化出木质部维管系统,通过水力学机制高效安全的向光合器官长距离运输水分,木质部水分运输对蒸腾、气孔运动、光合碳同化等生理过程有调控和协调作用,被称为植物生理学的支柱。植物水力学作为木质部水分运输的研究内容和手段,已成为整合植物与生态系统功能的中心枢纽。该文首先概述了植物水分运输的水力学机制、运输系统的局限性,以及木质部结构与功能之间的关系;其次,阐述了木质部栓塞的形成机制并详细介绍了栓塞的诱导方法和测试技术,分析了水分运输系统安全与效率之间的权衡关系,总结了植物对环境的响应和干旱致死的预测模型,讨论了测试技术问题及其引发的当前木质部逆压力修复和指数型木质部栓塞脆弱性曲线有效性的争议;最后,总结了目前植物木质部水力学研究的成果,提出了尚待解决的主要问题,探讨了研究机会与方向。  相似文献   

3.
木质部压力探针技术是目前直接测定植物木质部导管负压的唯一手段。在结构上,木质部压力探针测定系统由精密操作装置、压力探针系统和信号采集—传输一显示系统三大部分组成。其测定原理是将毛细管探针刺入木质部导管,通过传导介质将木质部导管负压传至压力传感器,压力传感器感应压力并将压力信号输出。本文从玻璃毛细管探针的制作、去气泡水的制备以及压力探针的校准、安装、测定等方面详细介绍了木质部压力探针的使用方法和注意事项。  相似文献   

4.
木本植物木质部栓塞脆弱性研究新进展   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部空穴化和栓塞是木本植物在干旱等条件下遭受水分胁迫时产生的木质部输水功能障碍, 在全球气候变化的大背景下, 栓塞脆弱性对干旱响应的研究已成为热点和重要内容。近年来有关木质部栓塞脆弱性与植物输水结构和耐旱性的关系已有大量研究并取得一定成果, 但是, 不同学者在不同地区对不同材料的研究结果存在很大不同。该文就近年来这一研究领域取得的成果及争议问题进行了概括和总结, 主要涉及木质部栓塞脆弱性(P50)及脆弱曲线的建立方法、木质部栓塞脆弱性与木质部结构(导管直径、导管长度、纹孔膜、木质部密度、纤维及纤维管胞)间的关系和木质部栓塞脆弱性与耐旱性的关系, 并对未来工作进行展望, 提出在未来的工作中应对同一树种使用Cochard Cavitron离心机法、Sperry离心机技术与传统方法建立的脆弱曲线进行比较验证、计算P50值、分析植物个体器官水平差异(根、茎、叶)、测定树种生理生态指标, 探索植物栓塞脆弱性与输水结构和耐旱性的关系, 从而评估不同类型植物在未来气候变化下的耐旱能力。  相似文献   

5.
7种木本植物根和小枝木质部栓塞的脆弱性   总被引:7,自引:0,他引:7  
安锋  张硕新 《生态学报》2005,25(8):1928-1933
用脆弱曲线表示的植物木质部栓塞脆弱性反映了植物木质部栓塞程度与其水势间的关系。众多学者的研究结果表明,脆弱曲线能够提供有关植物的许多生理生态信息,与植物的木质部结构、部位、分布、抗寒、抗旱性等存在一定关系,但各国学者利用不同材料研究得出的结果各异,为了研究木质部栓塞的这种差异是否由于树木对环境适应性不同引起,选取西北农林科技大学西林校区内自然状况下生长良好的5个耐旱树种:刺槐(RobiniapseudoacaciaL.)、元宝枫(AcertruncatumBge.)(低水势忍耐脱水耐旱树种)、白榆(UlmuspumilaL.)(亚低水势忍耐脱水耐旱树种)、油松(PinustabulaeformisCarr.)、白皮松(PinusbungeanaZucc.ex.Endl.)(高水势延迟脱水耐旱树种),及中生的女贞(LigustrumlucidumAit.)和柳树(SalixmatsudanaKoidz.f.pendulaSchneid.)为研究对象,绘制了它们根和小枝的木质部栓塞脆弱曲线,探讨了中生树种和不同耐旱类型树种根和小枝木质部栓塞脆弱性的差异。结果表明:根和小枝的栓塞脆弱性主要由木质部结构决定,栓塞脆弱性顺序基本一致,小枝容易发生木质部栓塞的,其根也较容易发生栓塞;同一树种根和小枝的木质部栓塞脆弱性与植物的耐旱性有关,与树种的耐旱策略无关;一般是中生树种的栓塞脆弱性:小枝>根;耐旱树种的栓塞脆弱性:根>小枝。  相似文献   

6.
Granier热消散探针法是目前研究树木生理生态和森林水文最常用的测定整树水分利用的方法之一。然而,已有的相关综述文献中,还没有专门介绍利用Granier热消散探针研究木质部液流的综述文章。本文重点介绍了Granier热消散探针测定系统的理论基础,对有关该探针的校准和改进的最新研究进展进行了综述,并还深入探讨了零液流信号值的确定、自然热梯度、损伤效应、液流的逆格型和将木质部液流密度外推至整树蒸腾耗水量等重要的实际问题。  相似文献   

7.
Granier热消散探针法是目前研究树木生理生态和森林水文最常用的测定整树水分利用的方法之一.然而,已有的相关综述文献中,还没有专门介绍利用Granier热消散探针研究木质部液流的综述文章.本文重点介绍了Granier热消散探针测定系统的理论基础,对有关该探针的校准和改进的最新研究进展进行了综述,并还深入探讨了零液流信号值的确定、自然热梯度、损伤效应、液流的逆格型和将木质部液流密度外推至整树蒸腾耗水量等重要的实际问题.  相似文献   

8.
研究现代植物维管系统中木质部的管状分子(tracheary element),包括管胞(tracheid)和导管分子(vessel member),特别是研究它们的次生壁加厚类型是植物解剖学的一个重要内容。  相似文献   

9.
木质部导管空穴化研究中的几个热点问题   总被引:11,自引:1,他引:10       下载免费PDF全文
 导管的空穴化和栓塞化现象是目前国际上水分生理生态研究的一个热点。该文对导管空穴化和栓塞化研究中出现的几个热点问题进行了概括和总结。1)在研究导管空穴化的实验手段上,超声波传感器探测法具有一定的局限性;目前至少存在4种可能的原因来解释木质部压力探针法(XPP)和压力室法所测得的导管水柱张力不一致的现象;近来出现的核磁共振成像法可以进行导管空穴化的无损伤检测。2)导管解剖学特征与形成空穴的可能性之间的关系可能与树种相关。3)导管空穴化引起气孔关闭的作用机制目前还不太清楚。4)植物防止空穴化产生的能力与适应干旱能力之间的关系还没有定论。5)单独用根压来解释空穴化导管的重新注水机制是不全面的,还存在其它重新注水机制。  相似文献   

10.
干旱导致树木死亡对生态系统功能和碳平衡有重大影响。植物水分运输系统失调是引发树木死亡的主要机制。然而, 树木对干旱胁迫响应的多维性和复杂性, 使人们对植物水分运输系统在极端干旱条件下的响应以及植物死亡机理的认识还不清楚。该文首先评述衡量植物抗旱性的指标, 着重介绍可以综合评价植物干旱抗性特征的新参数——气孔安全阈值(SSM)。SSM越高, 表明气孔和水力性状之间的协调性越强, 木质部栓塞的可能性越低, 水力策略越保守。然后, 阐述木本植物应对干旱胁迫的一般响应过程。之后, 分别综述植物不同器官(叶、茎和根)对干旱胁迫的响应机制。植物达到死亡临界阈值的概率和时间, 取决于相关生理和形态学特征的相互作用。最后, 介绍木本植物水力恢复机制, 并提出3个亟待开展的研究问题: (1)改进叶片水分运输(木质部和木质部外水力导度)的测量方法, 量化4种不同途径的叶肉水分运输的相对贡献; (2)量化叶片表皮通透性变化, 以便更好地理解植物水分利用策略; (3)深入研究树木水碳耦合机制, 将个体结构和生理特征与群落/景观格局和过程相关联, 以便更好地评估和监测干旱诱导树木死亡的风险。  相似文献   

11.
The rise of sap in mangroves has puzzled plant physiologists for many decades. The current consensus is that negative pressures in the xylem exist which are sufficiently high to exceed the osmotic pressure of seawater (2.5 MPa). This implies that the radial reflection coefficients of the mangrove roots are equal to unity. However, direct pressure probe measurements in xylem vessels of the roots and stems of mangrove (Rhizophora mangle) grown in the laboratory or in the field yielded below-atmospheric, positive (absolute) pressure values. Slightly negative pressure values were recorded only occasionally. Xylem pressure did not change significantly when the plants were transferred from tap water to solutions containing up to 1700 mOsmol kg?1 NaCl. This indicates that the radial reflection coefficient of the roots for salt, and therefore the effective osmotic pressure of the external solution, was essentially zero as already reported for other halophytes. The low values of xylem tension measured with the xylem pressure probe were consistent with previously published data obtained using the vacuum/leafy twig technique. Values of xylem tension determined with these two methods were nearly two orders of magnitude smaller than those estimated for mangrove using the pressure chamber technique (?3 to ?6MPa). Xylem pressure probe measurements and staining experiments with alcian blue and other dyes gave strong evidence that the xylem vessels contained viscous, mucilage- and/or protein-related compounds. Production of these compounds resulting from wound or other artifactual reactions was excluded. The very low sap flow rates of about 20–50 cm h?1 measured in these mangrove plants were consistent with the presence of high molecular weight polymeric substances in the xylem sap. The presence of viscous substances in the xylem sap of mangroves has the following implications for traditional xylem pressure measurement techniques, development of xylem tension, and longdistance water transport: (1) high external balancing pressures in the pressure chamber are needed to force xylem sap to the cut surface of the twig; (2) stable tensions much larger than 0.1 MPa can be developed only occasionally because viscous solutions provide nucleation sites for gas bubble formation; (3) the frequent presence of small gas bubbles in viscous solutions allows water transport by interfacial, gravity-independent streaming at gas/water interfaces and (4) the increased density of viscous solutions creates (gravity-dependent) convectional flows. Density-driven convectional flows and interfacial streaming, but also the very low radial reflection coefficient of the roots to NaCl are apparently the means by which R. mangle maintains water transport to its leaves despite the high salinity of the environment.  相似文献   

12.
Since its introduction in the late 19th century, the so-called cohesion theory has become widely accepted as explaining the mechanism of the ascent of sap. According to the cohesion theory, the minimum standing vertical xylem tension gradient should be 0·01 MPa m−1. When transpiration is occurring, frictional resistances are expected to make this gradient considerably steeper. The results of numerous pressure chamber measurements reported in the literature are generally regarded as corroborating the cohesion theory. Nevertheless, several reports of pressure chamber measurements in tall trees appear to be incompatible with predictions of the cohesion theory. Furthermore, the pressure chamber is an indirect method for inferring xylem pressure, which, until recently, has not been validated by comparison against a direct method. The xylem pressure probe provides a means of testing the validity of the pressure chamber and other indirect techniques for estimating xylem pressure. We discuss here the results of concurrent measurements made with the pressure chamber and the xylem pressure probe, particularly recent measurements made at the top of a tall tropical tree during the rainy season. These measurements indicate that the pressure chamber often substantially overestimates the tension previously existing in the xylem, especially in the partially dehydrated tissue of droughted plants. We also discuss other evidence obtained from classical and recent approaches for studying water transport. We conclude that the available evidence derived from a wide range of independent approaches warrants a critical reappraisal of tension-driven water transport as the exclusive mechanism of long-distance water transport in plants.  相似文献   

13.
Pressure probe measurements have been interpreted as showing that xylem pressures below c. –0.4 MPa do not exist and that pressure chamber measurements of lower negative pressures are invalid. We present new evidence supporting the pressure chamber technique and the existence of xylem pressures well below –0.4 MPa. We deduced xylem pressures in water-stressed stem xylem from the following experiment: (1) loss of hydraulic conductivity in hydrated stem xylem (xylem pressure = atmospheric pressure) was induced by forcing compressed air into intact xylem conduits; (2) loss of hydraulic conductivity from cavitation and embolism in dehydrating stems was measured, and (3) the xylem pressure in dehydrated stems was deduced as being equal and opposite to the air pressure causing the same loss of hydraulic conductivity in hydrated stems. Pressures determined in this way are only valid if cavitation was caused by air entering the xylem conduits (air-seeding). Deduced xylem pressure showed a one-to-one correspondence with pressure chamber measurements for 12 species (woody angiosperms and gymnosperms); data extended to c. –10 MPa. The same correspondence was obtained under field conditions in Betula occidentalis Hook., where pressure differences between air- and water-filled conduits were induced by a combination of in situ xylem water pressure and applied positive air pressure. It is difficult to explain these results if xylem pressures were above –0.4 MPa, if the pressure chamber was inaccurate, and if cavitation occurred by some mechanism other than air-seeding. A probable reason why the pressure probe does not register large negative pressures is that, just as cavitation within the probe limits its calibration to pressures above c. –0.5 MPa, cavitation limits its measurement range in situ.  相似文献   

14.
Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.  相似文献   

15.
This review emphasizes recent developments and controversies related to the uptake, transport and loss of water by trees. Comparisons of the stable isotope composition of soil and xylem water have provided new and sometimes unexpected insights concerning spatial and temporal partitioning of soil water by roots. Passive, hydraulic redistribution of water from moister to drier portions of the soil profile via plant root systems may have a substantial impact on vertical profiles of soil water distribution, partitioning of water within and among species, and on ecosystem water balance. The recent development of a technique for direct measurement of pressure in individual xylem elements of intact, transpiring plants elicited a number of challenges to the century-old cohesion-tension theory. The ongoing debate over mechanisms of long-distance water transport has stimulated an intense interest in the phenomenon and mechanisms of embolism repair. Rather than embolism being essentially irreversible, it now appears that there is a dynamic balance between embolism formation and repair throughout the day and that daily release of water from the xylem via cavitation may serve to stabilize leaf water balance by minimizing the temporal imbalance between water supply and demand. Leaf physiology is closely linked to hydraulic architecture and hydraulic perturbations, but the precise nature of the signals to which stomata respond remains to be elucidated. When water transport in trees is studied at multiple scales from single leaves to the whole organism, considerable functional convergence in regulation of water use among phylogenetically diverse species is revealed.  相似文献   

16.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

17.
The Cohesion-Tension theory of sap ascent: current controversies   总被引:15,自引:1,他引:14  
In recent years, the Cohesion-Tension (C-T) theory of sap ascentin plants has come under question because of work publishedby Professor Ulrich Zimmermann and colleagues at the Universityof Wrzburg, Germany. The purpose of this review is to (1) statethe essential and testable elements of the C-T theory, (2) summarizethe negative evidence for the C-T theory, and (3) review criticallythe positive evidence for the C-T theory and the evidence thatthe Scholander-Hammel pressure bomb measures xylem pressurepotential (Px) correctly, because much of the evidence for theC-T theory depends on pressure bomb data. Much of the current evidence negates the conclusions drawn byZimmermann from studies using the xylem pressure probe (XPP),but it is not yet clear in every instance why the XPP resultsdisagree with those of other methods for estimating xylem pressure.There is no reason to reject the XPP as a useful new tool forstudying xylem tensions in the range of 0 to –0.6 MPa.Additional research is needed to test the C-T theory with boththe XPP and traditional methods. Key words: Cohesion-Tension theory, cavitation, embolism, xylem pressure probe, pressure bomb  相似文献   

18.
The essentials of direct xylem pressure measurement   总被引:5,自引:0,他引:5  
This paper discusses the essentials of the oil‐filled pressure probe technique in the measurement of negative xylem pressures, focusing in particular on the technique and physics underlying our recent, successful experiment which has rekindled the debate on the validity of the Cohesion–Tension theory. We illustrate a number of general problems associated with the cell pressure probe and xylem pressure probe techniques, and propose appropriate criteria for micropipette construction. We enumerate factors dealing with the cavitation problem and suggest methods for eliminating air seeds in the system. We introduce reliable criteria for the successful measurement of xylem pressure, and emphasize the importance of the probe pressure relaxation test. Several problems regarding the controversy over the Cohesion–Tension theory are also discussed. We discuss the correlation between xylem pressure and the transpiration rate, the existence of absolute negative xylem pressure in intact plants, the most negative values of xylem pressure measured by the pressure probe, the agreement between the pressure probe and pressure bomb techniques, and the vulnerability to cavitation (tensile strength) of pressure probes.  相似文献   

19.
盐胁迫下大麦根系木质部压力的自调节现象   总被引:9,自引:0,他引:9  
用植物木质部压力探针测定的结果表明,水培大麦幼苗根的木质部压力在环境条件恒定不变时始终保持波动,并且在受到轻度的盐胁迫和当盐胁迫解除时表现出高度的自调节现象.这种波动和自调节现象将对植物水势的测定和根的径向反射系数的测定产生很大的影响,并可能与植物的抗盐性有关.小麦根在同样条件下未表现出上述现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号