首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Shedding of extracellular membranes from the cell surface may be one of the means through which cells communicate with one another. In an attempt to elucidate whether cell surface exfoliation is a directed or random process, we investigated the membrane lipid and protein composition and membrane lipid order of shed extracellular membranes and of plasma membranes from which they arose in normal circulating lymphocytes and in the B-lymphoblastoid cell lines Raji, WI HF2 729 and the T-lymphoblastoid cell line Jurkat. Extracellular membranes derived from transformed cell lines were more rigid as assessed by steady state polarization of 1,6-diphenylhexatriene (DPH) and were highly enriched in cholesterol when compared with the corresponding plasma membrane. The extracellular membranes from normal lymphocytes, on the other hand, were more fluid and contained more polyunsaturated acyl chains than did the plasma membranes from these cells. Our results suggest that extracellular membranes are shed from specialized regions of the lymphocyte plasma membrane and that membrane exfoliation is likely to be a directed event.  相似文献   

2.
The lipophilic fluorescent probe DPH, generally used to determine the microviscosity of membrane lipids, has been visualized in intact cells by fluorescence microscopy. All lipid material of the cells, including cytoplasmic lipid droplets, was found to be labelled with DPH. The fluorescent signal from inside the cells contributes to a large extent to the total cell fluorescence. The results indicate that fluorescence polarization data obtained from intact cells, using DPH as probe, give information on the total lipid material of the cells rather than exclusive information on microviscosity and fluidity of plasma membranes of these cells, as has been repeatedly suggested.  相似文献   

3.
Hepatic plasma membrane lipids of lean (+/?) and obese (ob/ob) mice have been investigated using 1,6-diphenylhexatriene (DPH). Arrhenius plots of DPH fluorescence polarization in membranes showed the breakpoint in obese mice was reduced from 21 to 15 degrees C, whereas the breakpoint of 5'-nucleotidase activity was raised from 23 to 32 degrees C. Arrhenius break temperatures of DPH polarization and 5'-nucleotidase activity responded differently to housing mice at 34 degrees C and triiodothyronine (T3) treatment. Studies of DPH polarization in liposomes and phospholipid fatty acid composition suggested that differences in sphingomyelin acyl composition determine Arrhenius characteristics of hepatic 5'-nucleotidase in lean and obese mice.  相似文献   

4.
Chronic ethanol increases liver plasma membrane fluidity   总被引:2,自引:0,他引:2  
Purified plasma membrane fractions of cultured well-differentiated Reuber H35 hepatoma cells were studied after growth in the presence or absence of ethanol. Growth of cells in the presence of ethanol significantly increased plasma membrane 5'-nucleotidase activity but did not influence sodium-potassium adenosinetriphosphatase activity. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of diphenylhexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from cells grown in 80 mM ethanol for 3 weeks, compared to controls. Decreased polarization of DPH in plasma membranes was observed after 3-weeks growth of cells in as little as 1 mM ethanol. A 1-h exposure to 80 mM ethanol had no effect. Altered DPH polarization was due to a decrease in the order parameter of the probe. The rotational correlation time of the probe was virtually unchanged. Chronic ethanol treatment of cells did not alter the polarization of the membrane surface probe trimethylammoniodiphenylhexatriene. Plasma membranes from cells grown in 80 mM ethanol had decreased contents of both phospholipid and unesterified cholesterol, but the cholesterol to phospholipid ratio was unchanged. The percentages of sphingomyelin and phosphatidylserine in plasma membrane phospholipids were significantly decreased after ethanol treatment, while the phosphatidylcholine/sphingomyelin ratio was increased by 42%. Vesicles prepared from total plasma membrane lipids of ethanol-treated cells, as well as vesicles prepared from polar lipids alone, showed the same alterations in DPH polarization as did plasma membranes. The importance of ethanol metabolism in the observed plasma membrane changes was demonstrated in two ways.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fluorescence polarization measurements with the probe 1,6-diphenyl-1,3,5-hexatriene (DPH) were performed to detect changes in the fluidity of plasma membranes from T-lymphocytes stimulated with mitogens. When the cells were incubated with succinyl-concanavalin A an increase in fluorescence polarization was observed. This, however, could be shown to be due to the interaction of the mitogen with the label DPH and did not reflect changes in the plasma membrane. In purified plasma membranes a decrease rather than an increase of fluorescence polarization was observed.  相似文献   

6.
In order to obtain more information on membrane phenomena occurring at the cell surface of rabbit thymocytes we have performed experiments aimed at altering the lipid composition of the plasma membrane. Thymocytes were incubated at 37°C with phospholipid vesicles of different compositions. Vesicle-cell interaction was followed by measuring the degree of fluorescence polarization and the uptake of vesicle-entrapped carboxyfluorescein. Neutral and negatively charged liposomes prepared from egg phosphatidylcholine are currently used in investigations of vesicle-cell interaction. In this report we show that these liposomes do not interact with rabbit thymocytes as is evident from unaltered lipid fluidity measured in whole cells and in isolated plasma membranes. This was confirmed by experiments with vesicle-entrapped carboxyfluorescein showing hardly any uptake of the fluorophor from neutral and negatively charged egg phosphatidylcholine liposomes. Using both techniques substantial interaction was found with positively charged egg phosphatidylcholine liposomes and with liposomes prepared from soybean lecithin which is composed of a variety of phospholipids. The results of these experiments were supported by lipid analysis of cells treated with soybean lecithin liposomes. Increase in phosphatidylcholine contents of mixed phospholipid vesicles was further shown to result in decreased vesicle-cell interaction. From measurements of the quantity of carboxyfluorescein inside cells and the total amount of cell-associated carboxyfluorescein it is concluded that adsorption plays a prominent role in interaction between liposomes and rabbit lymphocytes. The grade of maturation of lymphocytes was also found to affect vesicle-cell interaction. The more mature thymocytes took up more vesicle-entrapped carboxyfluorescein from soybean liposomes than immature thymocytes. Mesenteric lymph node cells exhibited a still stronger interaction. The role of vesicle and cell surface charge and membrane fluidity of both vesicles and cells in interaction between liposomes and rabbit thymocytes is discussed.  相似文献   

7.
The influence of dolichols on fluidity of mouse synaptic plasma membranes   总被引:1,自引:0,他引:1  
Dolichols are isoprenologues which constitute an important component of biological membranes. However, an understanding of the effects of dolichols on the organization and dynamics of biological membranes has not been forthcoming. The experiments reported here are aimed at understanding the effects of dolichols on the physical properties of mouse brain synaptic plasma membranes. The effect of dolichols incorporated into mouse brain synaptic plasma membranes on fluorescent and electron spin resonance probes sensing the hydrophobic core differed from that of probes reporting closer to the surface of membrane bilayers. Dolichols significantly (P less than 0.01) lowered the polarization, limiting anisotropy, and order parameter of diphenylhexatriene in synaptic plasma membranes and liposomes extracted from synaptic plasma membranes, without changing the rotational relaxation time. Similarly, dolichol increased the fluidity reported by 16-doxylstearic acid in synaptic plasma membranes or liposomes extracted from synaptic plasma membranes. In contrast, dolichols exerted no effect on those properties for trans-parinaric acid or 5-doxylstearic acid in synaptic plasma membranes or liposomes derived therefrom. Dolichols can dramatically alter the structure and dynamics of lipid motion in synaptic plasma membranes and these effects are dependent on the location of the probe in the membrane.  相似文献   

8.
Pristane induced changes in rat lymphocyte membrane fluidity   总被引:1,自引:0,他引:1  
The ability of pristane (2,6,10,14-tetramethylpentadecane) to act as a membrane perturbant was examined. Data obtained from rats treated with pristane by either intraperitoneal injection or the diet indicated there were significant increases over normal in the amount of pristane in lymphoid cells; 50-89% was incorporated into the plasma membranes. Fluorescence polarization analyses, using 1,6-diphenyl-1,3,5-hexatriene, of normal plasma membrane isolates demonstrated that splenic and Peyer's patch lymphocytic membranes were more viscous than those of the thymus, mesenteric lymph nodes or peripheral blood. Studies to assess the effects of pristane on membrane viscosity demonstrated that there were significant differences in the viscosities of plasma membrane isolates from lymphocytes of normal versus pristane treated rats. The observed changes were dependent on route of administration, length of exposure and the lymphoid organ examined.  相似文献   

9.
Nanosecond decays of the fluorescence anisotropy, r, were studied for the emission of 1,6-diphenyl-1,3,5-hexatriene (DPH) embedded in a series of mixed multilamellar liposomes containing egg yolk phosphatidylcholine, phosphatidylethanolamine and cholesterol in varying molar ratios, as well as in membranes of intact cells and in virus envelopes. The relative contributions of the fast and the infinitely slow decaying component to the steady-state value r, of the fluorescence anisotropy were very similar for artifical and biological membranes. Angles, theta, of the cone, by which the motion of the fluorescent molecule is limited, were calculated from the intensity of the infinitely slow decaying anisotropy component and compared with steady-state fluorescence anisotropies and with 'microviscosities', (eta). An increase in (eta) from 1.5 to 5.2 P in our systems was accompanied by a decrease in theta from 49 degrees to 30 degrees while the decrease in the mean motional relaxation times, phi f, of the label molecule was not more than 1 ns and due mainly to changes in the potential, by which the diffusion of DPH in the membrane is restricted. From these observations we conclude that differences in the steady-state fluorescence anisotropy and in 'microviscosities' of cholesterol-containing membranes (r greater than 0.15) represent changes in the degree of static orientational constraint rather than changes in diffusion rates of the label.  相似文献   

10.
The influence of tri-n-butyltin acetate (TBTA) and tri-n-butyltin chloride (TBTC) on the physico-chemical state of charged and neutral phospholipids was investigated using multilamellar liposomes. The thermal dependence of steady state fluorescence polarization of DPH and its charged derivative TMA-DPH was recorded. The two fungicides lowered DPPC phase transition temperature and broadened the temperature range of the transition in different ways. The effects were concentration-dependent. The results show that TBTC interacts more effectively with DPPC model membranes rather than TBTA. Moreover, TBTC broadens and shifts the main phase transition (Tm) more effectively in DPPC rather than in DMPC liposomes. Below Tm, TBTC decreases fluorescence polarization (P) in all phospholipids used. Above Tm P is almost constant in phospholipids with saturated acyl chains, except for DMPG. In fact, an increase of P is detectable in this lipid as in PLs with unsaturated acyl chains. It is suggested that the effects of TBT on liposomal membranes are dependent on the anion moiety and phospholipids characteristics.  相似文献   

11.
There are indications from freeze-fracture experiments that subclasses of rabbit thymocytes show different mobilities of plasma membrane components. Consequently, one would expect differences in the fluidity of the plasma membrane. For this reason, rabbit thymocytes were separated on a Ficoll/Metrizoate gradient yielding three subclasses representing various levels of cell differentiation. These thymocyte subclasses did not show any significant differences in the degree of fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene. The fluorescence polarization of the plasma membrane may be overshadowed by the contribution of all cellular lipids due to penetration of the fluorescent probe into the cell. Therefore, plasma membranes were isolated from rabbit thymocytes using a cell-disrupting pump, differential centrifugation, and sucrose density gradient centrifugation. As shown by biochemical and electron microscopical analyses, plasma membranes with a high degree of purity were obtained. As expected the plasma membrane fractions showed a higher microviscosity than the other subcellular fractions. This was attributed to a higher cholesterol to phospholipid molar ratio and a higher degree of saturation of phospholipid fatty acid chains.Subsequently, the microviscosity was measured of plasma membrane preparations obtained from two main subclasses of thymocytes representing mature and immature lymphocytes. The immature thymocytes yielded two plasma membrane fractions with higher microviscosity than the mature cells.  相似文献   

12.
The effects of vitamin E (alpha-tocopherol) and its model compounds on the fluidity of liposomes composed of dipalmitoylphosphatidylcholin (DPPC) and fatty acids were investigated by the measurement of the fluorescent polarization (P) using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a plobe. Although all tocopherols decreased the fluidity of liposomes which was perturbed by the inclusion of an unsaturated fatty acid having more than one double bond, alpha-tocopherol was more effective than the others. The fluidity in arachidonic acid-containing liposomes was decreased most in the presence of alpha-tocopherol and was decreased considerably by the inclusion of model compounds having a side chain at least one isoprene unit or a long straight chain instead of isoprenoid side chain. However, the chromanol with methyl group instead of the above side chain, and phytol, having no chromanol moiety, had no effect. These results show that a structural requirement for a membrane stabilization is to be either the chromanol moiety with methyl groups born on its aromatic ring or a side chain of appropriate length; an isoprenoid side chain of full length or one containing 4'a- and 8'a-methyl groups is not necessarily needed.  相似文献   

13.
Optimal reaction conditions were established for hydrogenation of plasma membranes of living murine GRSL leukemia cells, using the water-soluble catalyst Pd(QS)2 (QS, sulphonated alizarine; C14H6O7NaS). Under these conditions more than 80% of the cells remained viable. Analysis by gas chromatography revealed that hydrogenation occurred predominantly in the 18:2, 20:4 and 22:6 fatty acyl chains of the membrane phospholipids. Under the same conditions hydrogenation was also performed in purified plasma membranes from GRSL cells and from rat liver, and in liposomes prepared from the total lipid extracts of these membranes. Hydrogenation increased the lipid structural order parameter in the membranes, as measured by fluorescence polarization. This increase was more pronounced in the liposomes (46%) than in the plasma membranes (17-25%). Hydrogenation increased the expression of a 15 kDa antigen on the surface of viable GRSL cells, as measured in a Fluorescence Activated Cell Sorter, using monoclonal antibodies. The expression of four other antigens, among which H-2k, was not or much less affected by this treatment.  相似文献   

14.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The membrane order of liver endoplasmic reticulum (ER) membranes of 10 degrees C- and 30 degrees C-acclimated carp has been compared using the fluorescence polarization technique with DPH as probe. Membranes from cold-acclimated fish displayed lower polarizations than corresponding membranes from warm-acclimated fish, the difference compensating for 34-50% of the direct effects of temperature upon polarization. The changes in delta 9-desaturase activity and fluorescence polarization of DPH in ER membranes have been monitored as a function of time during cold acclimation of 30 degrees C-acclimated carp. Cooling was achieved in three stages over 48 h. Desaturase activity in both rough and smooth ER showed a rapid increase in activity for the first three days followed by a decline on day 4 and a second increase up to day 10. Polarization of DPH (measured at 10 degrees C) was rapidly reduced on cooling with no further change after day 4. The halftime for change in polarization and for the first desaturase induction were both approx. 2 days although large changes in polarization were evident within 24 h after the onset of cooling. During the cooling phases the daily changes in DPH polarization were quantitatively related to increments in desaturase capacity. The second desaturase induction had no effect upon membrane structure, at least as indicated by the polarization technique.  相似文献   

16.
The effect of chronic administration of lithium salts on the lipid composition and physical properties of the synaptosomal plasma membrane was examined in rat brain. The effect of lithium treatment has been studied on the fluorescence polarization of synaptosomal plasma membrane and artificial lipid vesicles and on the lipid composition of the membranes. Fluorescence polarization of lipophilic probes was used to study membrane lipid structure. Steady-state polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe of the hydrophobic core, was significantly lower in plasma membranes from lithium-treated animals. Altered DPH polarization was due to a decrease in the order parameter of the probe. The lithium-treatment also changed the fluorescence of 1-anilino-8-naphthalene sulfonate (ANS), a probe that binds to the polar head group of the phospholipids and to proteins on the membrane surface. Synaptic plasma membranes from treated rats presented no significant changes on the cholesterol-to-phospholipid ratio, although the phospholipid class distribution was altered and the membrane phospholipid unsaturation increased. In summary, the neural plasma membranes became disorder after chronic lithium administration at therapeutic levels. This structural change may be due to changes in plasma membrane phospholipid distribution and to the degree of unsaturation of phospholipid fatty acids.  相似文献   

17.
The fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a probe was used to determine the lipid microviscosity, η, of isolated plasma membranes of mouse thymus-derived ascitic leukemia (GRSL) cells and of extracellular membraneous vesicles exfoliated from these cells and occurring in the ascites fluid. For comparison, η was also determined in isolated plasma cell supernatants.For isolated plasma membranes of thymocytes and GRSL cells η values at 25° C amounted to 4.67 and 3.28 P, respectively, which were higher than the microviscosities of the corresponding intact cells, 3.24 and 1.73 P, respectively.Microviscosities inextracellular membranes of thymocytes and GRSL cells were 5.96 and 5.83 P, respectively. The fluidity difference between these membranes and plasma membranes was most pronounced for the leukemic cells and was thereby correlated with a large difference in cholesterol/phospholipid molar ratio (1.19 for extracellular membranes and 0.37 for plasma membranes). It is proposed that extracellular membraneous vesicles are shed from the surface of GRSL cells similar to the budding process of viruses, that is by selection of the most rigid parts of the host cell membrane.Liposomes of total lipid extracts of plasma membranes and extracellular membranes of both cell types exhibited about the same microviscosity as the corresponding intact membranes, indicating virtually no contribution of (glyco)-protein to the lipid fluidity as measured by the fluorescence polarization technique. For both cell types η (25° C) values of liposomes consisting of membrane phospholipids varied between 1.5 and 1.9 P, much lower than the values for total lipids, indicating a significant rigidizing effect of cholesterol in each type of membrane.  相似文献   

18.
Effects of biologically active compounds bilirubin (BR), farmorubicin (FR), and chelerythrine (CR) on phagosome-lysome (P-L) fusion in mouse peritoneal macrophages were studied using fluorescent dye acridine orange as lysosomal labelling and yeast cells as target. It was found that all three compounds tested enhanced P-L fusion. To investigate mechanisms of these effects, changes in fluidity of rat liver lysosomal membranes under influence of BR, FR and CR were studied by measuring fluorescence intensity, lifetime, and polarization of DPH or TMA-DPH incorporated in isolated rat liver lysosomes. In order to characterize the cytoskeleton changes under the action of these biologically active compounds F-actin content in peritoneal macrophages of mice was determined. Our results demonstrate that BR action induces a decrease in DPH and TMA-DPH polarization, FR increases DPH and TMA-DPH polarization, and CR causes only an increase in TMA-DPH polarization in lysosomal membranes. All three compounds tested increase F-actin content in peritoneal macrophages. Thus, the effect of BR on P-L fusion is connected with increasing fluidity of lysosomal membranes and the cytoskeleton changes. The enhancement of P-L fusion under the action of FR and CR can most likely be explained by changes of the cytoskeleton state.  相似文献   

19.
Complementary biophysical techniques have provided evidencefor an effect of temperature-induced changes in lipid fluidityon the conformation of proteins in senescing plant membranes.Smooth microsomal membranes were isolated from bean cotyledons(Phaseolus vulgaris L. (cv Kinghorn)) at various stages of senescence.Lipid fluidity was measured by fluorescence polarization afterlabelling the membranes with diphenyl hexatriene (DPH). Alterationsin protein conformation were determined by labelling the membraneswith the paramagnetic sulfhydryl reagent, 3-maleimido proxyl(3-MP), and following changes in the ratio of weakly immobilizedto strongly immobilized (w/s) spin label. Plots of w/s as afunction of temperature featured characteristic break pointsfor each age of membrane. Corresponding break points at virtuallyidentical temperatures were also observed in plots of DPH polarizationversus temperature for membranes as well as for liposomes preparedfrom lipid extracts of membranes. In at least one instance thesebreak points in DPH polarization did not correspond to liquid-crystallineto gel phase transitions in the lipid. The fluidity of microsomalmembranes decreased with advancing senescence of the cotyledons,and there were also changes in the parameter w/s for membraneproteins with advancing age. The results indicate that subtlechanges in the molecular ordering of lipid bilayers alter therelative proportions of weakly and strongly immobilized sulfhydrylgroups in the membrane proteins, which can be interpreted asreflecting changes in protein conformation. 1 Present address: Agronomy Department, Cornell University,Ithaca, N.Y. 14853, U.S.A. (Received January 19, 1987; Accepted April 14, 1987)  相似文献   

20.
The effect of peroxidation on 5'-nucleotidase activity as well as on membrane microviscosity has been investigated in liver plasma membranes from Wistar rats. The peroxidation was performed with 100 microM H2O2 and 200 microM FeSO4 and/or with 5 mM t-butylhydroperoxide. Treatment of the membranes with these oxidizing agents resulted in an elevation of the transition temperatures of the polarization of the lipid fluorescent probes 1,6 diphenyl-1,3,5 hexatriene (DPH), 3-p-(6-phenyl) 1,3,5 hexatriene phenylpropionic acid (PA-DPH) as well as of the fluorescent thiol reagent N-(1-pyrene) maleimide (1-PM). The peroxidation resulted in a decrease of the activity of 5'nucleotidase. Our data support that the increase of membrane microviscosity of the lipid domain regulates the activity of 5'-nucleotidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号