首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inbreeding depression is the reduction in fitness caused by mating between related individuals. Inbreeding is expected to cause a reduction in offspring fitness when the offspring themselves are inbred, but outbred individuals may also suffer a reduction in fitness when they depend on care from inbred parents. At present, little is known about the significance of such intergenerational effects of inbreeding. Here, we report two experiments on the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care, in which we investigated inbreeding depression in offspring when either the offspring themselves or their parents were inbred. We found substantial inbreeding depression when offspring were inbred, including reductions in hatching success of inbred eggs and survival of inbred offspring. We also found substantial inbreeding depression when parents were inbred, including reductions in hatching success of eggs produced by inbred parents and survival of outbred offspring that received care from inbred parents. Our results suggest that intergenerational effects of inbreeding can have substantial fitness costs to offspring, and that future studies need to incorporate such costs to obtain accurate estimates of inbreeding depression.  相似文献   

2.
Theory suggests that intraspecific competition associated with direct competition between inbred and outbred individuals should be an important determinant of the severity of inbreeding depression. The reason is that, if outbred individuals are stronger competitors than inbred ones, direct competition should have a disproportionate effect on the fitness of inbred individuals. However, an individual's competitive ability is not only determined by its inbreeding status but also by competitive asymmetries that are independent of an individual's inbreeding status. When this is the case, such competitive asymmetries may shape the outcome of direct competition between inbred and outbred individuals. Here, we investigate the interface between age‐based competitive asymmetries within broods and direct competition between inbred and outbred offspring in the burying beetle Nicrophorus vespilloides. We found that inbred offspring had lower survival than outbred ones confirming that there was inbreeding depression. Furthermore, seniors (older larvae) grew to a larger size and had higher survival than juniors (younger larvae), confirming that there were age‐based competitive asymmetries. Nevertheless, there was no evidence that direct competition between inbred and outbred larvae exacerbated inbreeding depression, no evidence that inbreeding depression was more severe in juniors and no evidence that inbred juniors suffered disproportionately due to competition from outbred seniors. Our results suggest that direct competition between inbred and outbred individuals does not necessarily exacerbate inbreeding depression and that inbred individuals are not always more sensitive to poor and stressful conditions than outbred ones.  相似文献   

3.
Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed‐feeding beetle, Stator limbatus. There was strong directional selection favoring large eggs for both inbred and outbred beetles; offspring from smaller eggs had lower survivorship on a resistant host. Inbreeding treatment had no effect on the magnitude of selection on egg size; all selection coefficients were between ~0.078 and 0.096, regardless of treatment. However, inbreeding depression declined with egg size; this is because the difference in fitness between inbreds and outbreds did not change, but average fitness increased, with egg size. A consequence of this is that populations that differ in mean egg size should experience different magnitudes of inbreeding depression (all else being equal) and thus should differ in the magnitude of selection on traits that affect mating, simply as a consequence of variation in egg size. Also, maternal traits (such as egg size) that mediate stressfulness of the environment for offspring can mediate the severity of inbreeding depression.  相似文献   

4.
Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long‐lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long‐lived species is limited. In this study, we leverage a well‐studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long‐lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex‐specific evolutionary trade‐offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long‐lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.  相似文献   

5.
How females allocate resources to each offspring and how they allocate the sex of their offspring are two powerful potential avenues by which mothers can affect offspring fitness. Previous research has focussed extensively on mean offspring size, with much less attention given to variance in offspring size. Here we focussed on variation in offspring size in black ratsnakes, Elaphe obsoleta . We collected and hatched 105 clutches (1283 eggs) over 9 years. We predicted that females should lay larger eggs, or more variable eggs, when the environment is less predictable. We also predicted that females laying early or laying larger eggs should produce mostly sons because adult males are larger than adult female ratsnakes. The largest hatchling was more than twice the length and almost four times the mass of the smallest hatchling. Variation in offspring size was itself highly variable, with CVs in offspring mass among clutches ranging from 1% to 25%. With one exception, the variables we expected should influence variation in offspring size had little effect. We found that clutch size increased with maternal size and that egg size decreased with clutch size, but we found no evidence that variance in egg size among clutches increased as the season progressed or that females increased the mean size of their offspring the later in the season they laid their eggs. Females in better condition after they finish laying their eggs did produce larger eggs. There was no relationship between within-clutch variation in egg size and laying date or mean egg size. Finally, sex ratio did not vary with mean egg size or hatching date. Given evidence that offspring size in snakes affects survival, selection should reduce variation in offspring size unless that variance enhances maternal fitness and yet we found little support for hypothesized advantages of varying offspring size.  相似文献   

6.
The trade‐off between offspring size and number can present a conflict between parents and their offspring. Because egg size is constrained by clutch size, the optimal egg size for offspring fitness may not always be equivalent to that which maximizes parental fitness. We evaluated selection on egg size in three turtle species (Apalone mutica, Chelydra serpentina and Chrysemys picta) to determine if optimal egg sizes differ between offspring and their mothers. Although hatching success was generally greater for larger eggs, the strength and form of selection varied. In most cases, the egg size that maximized offspring fitness was greater than that which maximized maternal fitness. Consistent with optimality theory, mean egg sizes in the populations were more similar to the egg sizes that maximized maternal fitness, rather than offspring fitness. These results provide evidence that selection has maximized maternal fitness to achieve an optimal balance between egg size and number.  相似文献   

7.
ABSTRACT Multiple factors potentially affect nestling survival and maternal reproductive success. However, little is known about the relative importance of different factors when operating simultaneously or whether the same factors are important for nestlings and their mothers. We determined the effect of hatching asynchrony, individual egg size, mean egg size, nestling sex, and clutch initiation date on the survival of individual nestlings and on maternal reproductive success in Common Grackles (Quiscalus quiscula) from 2004 to 2006 in central Illinois. Factors most important to maternal success differed from those important for individual nestling growth and survival. Hatching asynchrony had the greatest within‐nest influence on the fate of nestlings; the earlier a nestling hatched relative to siblings, the greater its mass and likelihood of fledging. Clutch size had the greatest influence on maternal reproductive success, with females with larger clutches fledging more young. Thus, both nestling survival and maternal success were largely determined by a single, albeit different, factor. A possible explanation for the apparent unimportance of most factors we measured in determining maternal success is that we did not consider variation among females. Individual variation in maternal attributes such as condition, size, age, experience, or mate quality may result in females tailoring clutch attributes (i.e., egg size, sex, and degree of hatching asynchrony) in ways that allow them to maximize their reproductive success. The discordance between factors that benefited mothers versus their offspring illustrates the importance of considering the maternal consequences of any factor that appears to affect offspring survival. Factors that increase the mass and survival of some offspring may not result in increased maternal reproductive success.  相似文献   

8.
The evolution and expression of mate choice behaviour in either sex depends on the sex‐specific combination of mating costs, benefits of choice and constraints on choice. If the benefits of choice are larger for one sex, we would expect that sex to be choosier, assuming that the mating costs and constraints on choice are equal between sexes. Because deliberate inbreeding is a powerful genetic method for experimental manipulation of the quality of study organisms, we tested the effects of both male and female inbreeding on egg and offspring production in Drosophila littoralis. Female inbreeding significantly reduced offspring production (mostly due to lower egg‐to‐adult viability), whereas male inbreeding did not affect offspring production (despite a slight effect of paternal inbreeding on egg‐to‐adult viability). As inbreeding depressed female quality more than male quality, the benefits of mate choice were larger for males than for females. In mate choice experiments, inbreeding did not affect male mating success (measured as a probability to be accepted as a mate in a large group), suggesting that females did not discriminate among inbred and outbred males. In contrast, female mating success was affected by inbreeding, with outbred females having higher mating success than inbred females. This result was not explained by lower activity of inbred females. Our results show that D. littoralis males benefit from mating with outbred females of high genetic quality and suggest adaptive male mate choice for female genetic quality in this species. Thus, patterns of mating success in mate choice trials mirrored the benefits of choice: the sex that benefited more from choice (i.e. males) was more choosy.  相似文献   

9.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

10.
Although inbreeding is commonly known to depress individual fitness, the severity of inbreeding depression varies considerably across species. Among the factors contributing to this variation, family interactions, life stage and sex of offspring have been proposed, but their joint influence on inbreeding depression remains poorly understood. Here, we demonstrate that these three factors jointly shape inbreeding depression in the European earwig, Forficula auricularia. Using a series of cross‐breeding, split‐clutch and brood size manipulation experiments conducted over two generations, we first showed that sib mating (leading to inbred offspring) did not influence the reproductive success of earwig parents. Second, the presence of tending mothers and the strength of sibling competition (i.e. brood size) did not influence the expression of inbreeding depression in the inbred offspring. By contrast, our results revealed that inbreeding dramatically depressed the reproductive success of inbred adult male offspring, but only had little effect on the reproductive success of inbred adult female offspring. Overall, this study demonstrates limited effects of family interactions on inbreeding depression in this species and emphasizes the importance of disentangling effects of sib mating early and late during development to better understand the evolution of mating systems and population dynamics.  相似文献   

11.
It is often assumed that there is a positive relationship between egg size and offspring fitness. However, recent studies have suggested that egg size has a greater effect on offspring fitness in low‐quality environments than in high‐quality environments. Such observations suggest that mothers may compensate for poor posthatching environments by increasing egg size. In this paper we test whether there is a limit on the extent to which increased egg size can compensate for the removal of posthatching parental care in the burying beetle, Nicrophorus vespilloides. Previous experiments with N. vespilloides suggest that an increased egg size can compensate for a relatively poor environment after hatching. Here, we phenotypically engineered female N. vespilloides to produce large or small eggs by varying the amount of time they were allowed to feed on the carcass as larvae. We then tested whether differences between these groups in egg size translated into differences in larval performance in a harsh postnatal environment that excluded parental care. We found that females engineered to produce large eggs did not have higher breeding success, and nor did they produce larger larvae than females engineered to produce small eggs. These results suggest that there is a limit on the extent to which increased maternal investment in egg size can compensate for a poor posthatching environment. We discuss the implication of our results for a recent study showing that experimental N. vespilloides populations can adapt rapidly to the absence of posthatching parental care.  相似文献   

12.
1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.  相似文献   

13.
The provisioning of offspring can have far-reaching consequences for later life in a wide range of organisms and generally this provisioning is thought to be under maternal influence or control. In experiments with a broadcast-spawning ascidian, we found that the size of offspring was determined by egg size and the abundance of sperm present during fertilization. Larger eggs were fertilized at low sperm concentrations, whilst smaller eggs were successfully fertilized at high sperm concentrations. These differences in fertilized egg size resulted in differences in the development rate, hatching success and mean size of the subsequent larvae. Our results suggest that, in contrast to females that reproduce by other mating systems, free-spawning mothers lack some control over the provisioning of offspring. Furthermore, because males can alter the sperm environment, they can exert paternal (non-genetic) control over key offspring characteristics.  相似文献   

14.
Ongoing habitat loss and fragmentation result in rapid population size reductions, which can increase the levels of inbreeding. Consequently, many species are threatened by inbreeding depression, a loss of individual fitness following the mating of close relatives. Here, we investigated inbreeding effects on fitness‐related traits throughout the lifetime of the mustard leaf beetle (Phaedon cochleariae) and mechanisms for the avoidance of inbreeding. Previously, we found that these beetles have family‐specific cuticular hydrocarbon profiles, which are likely not used as recognition cue for precopulatory inbreeding avoidance. Thus, we examined whether adult beetles show postcopulatory inbreeding avoidance instead. For this purpose, we determined the larval hatching rate of eggs laid by females mated sequentially with two nonsiblings, two siblings, a nonsibling, and a sibling or vice versa. The beetles suffered from inbreeding depression throughout their entire ontogeny, as evinced by a prolonged larval development, a decreased larval and adult survival and a decreased reproductive output of inbred compared to outbred individuals. The highest larval hatching rates were detected when females were mated with two nonsiblings or first with a sibling and second with a nonsibling. Significantly lower hatching rates were measured in the treatments with a sibling as second male. Thus, the results do not support the existence of postcopulatory inbreeding avoidance in P. cochleariae, but revealed evidence for second male sperm precedence. Consequently, an alternative strategy to avoid inbreeding costs might exist in this beetle, such as a polyandrous mating system, potentially coupled with a specific dispersal behavior.  相似文献   

15.
Size‐dependent reproductive success of wild zebrafish Danio rerio was studied under controlled conditions in the laboratory to further understand the influence of spawner body size on reproductive output and egg and larval traits. Three different spawner size categories attained by size‐selective harvesting of the F1‐offspring of wild D. rerio were established and their reproductive performance compared during a 5 day period. As to be expected, large females spawned more frequently and had significantly greater clutch sizes than small females. Contrary to expectations, small females produced larger eggs when measured as egg diameter with similar amounts of yolk compared to eggs spawned by large spawners. Eggs from small fish, however, suffered from higher egg mortality than the eggs of large individuals. Embryos from small‐sized spawners also hatched later than offspring from eggs laid by large females. Larval standard length (LS)‐at‐hatch did not differ between the size categories, but the offspring of the large fish had significantly larger area‐at‐hatch and greater yolk‐sac volume indicating better condition. Offspring growth rates were generally similar between offspring from all size categories, but they were significantly higher for offspring spawned by small females in terms of LS between days 60 and 90 post‐fertilization. Despite temporarily higher growth rates among the small fish offspring, the smaller energy reserves at hatching translated into lower condition later in ontogeny. It appeared that the influence of spawner body size on egg and larval traits was relatively pronounced early in development and seemed to remain in terms of condition, but not in growth, after the onset of exogenous feeding. Further studies are needed to explore the mechanisms behind the differences in offspring quality between large‐ and small‐sized spawners by disentangling size‐dependent maternal and paternal effects on reproductive variables in D. rerio.  相似文献   

16.
Inbreeding results from matings between relatives and can cause a reduction in offspring fitness, known as inbreeding depression. Previous work has shown that a wide range of environmental stresses, such as extreme temperatures, starvation and parasitism, can exacerbate inbreeding depression. It has recently been argued that stresses due to intraspecific competition should have a stronger effect on the severity of inbreeding depression than stresses due to harsh physical conditions. Here, we tested whether an increase in the intensity of sibling competition can exacerbate inbreeding depression in the burying beetle Nicrophorus vespilloides. We used a 2 × 3 factorial design with offspring inbreeding status (outbred or inbred) and brood size (5, 20, or 40 larvae) as the two factors. We found a main effect of inbreeding status, as inbred larvae had lower survival than outbred larvae, and a main effect of brood size, as larvae in large broods had lower survival and mass than larvae in medium‐sized broods. However, there was no effect of the interaction between inbreeding status and brood size, suggesting that sibling competition did not influence the severity of inbreeding depression. Since we focused on sibling competition within homogeneous broods of either inbred or outbred larvae, we cannot rule out possible effects of sibling competition on inbreeding depression in mixed paternity broods comprising of both inbred and outbred offspring. More information on whether and when sibling competition might influence inbreeding depression can help advance our understanding of the causes underlying variation in the severity of inbreeding depression.  相似文献   

17.
Parents affect offspring fitness by propagule size and quality, selection of oviposition site, quality of incubation, feeding of dependent young, and their defence against predators and parasites. Despite many case studies on each of these topics, this knowledge has not been rigorously integrated into individual parental care traits for any taxon. Consequently, we lack a comprehensive, quantitative assessment of how parental care modifies offspring phenotypes. This meta‐analysis of 283 studies with 1805 correlations between egg size and offspring quality in birds is intended to fill this gap. The large sample size enabled testing of how the magnitude of the relationship between egg size and offspring quality depends on a number of variables. Egg size was positively related to nearly all studied offspring traits across all stages of the offspring life cycle. Not surprisingly, the relationship was strongest at hatching but persisted until the post‐fledging stage. Morphological traits were the most closely related to egg size but significant relationships were also found with hatching success, chick survival, and growth rate. Non‐significant effect sizes were found for egg fertility, chick immunity, behaviour, and life‐history or sexual traits. Effect size did not depend on whether chicks were raised by their natural parents or were cross‐fostered to other territories. Effect size did not depend on species‐specific traits such as developmental mode, clutch size, and relative size of the egg, but was larger if tested in captive compared to wild populations and between rather than within broods. In sum, published studies support the view that egg size affects juvenile survival. There are very few studies that tested the relationship between egg size and the fecundity component of offspring fitness, and no studies on offspring survival as adults or on global fitness. More data are also needed for the relationships between egg size and offspring behavioural and physiological traits. It remains to be established whether the relationship between egg size and offspring performance depends on the quality of the offspring environment. Positive effect sizes found in this study are likely to be driven by a causal effect of egg size on offspring quality. However, more studies that control for potential confounding effects of parental post‐hatching care, genes, and egg composition are needed to establish firmly this causal link.  相似文献   

18.
Maternal condition influences phenotypic selection on offspring   总被引:4,自引:0,他引:4  
1. Environmentally induced maternal effects are known to affect offspring phenotype, and as a result, the dynamics and evolution of populations across a wide range of taxa. 2. In a field experiment, we manipulated maternal condition by altering food availability, a key factor influencing maternal energy allocation to offspring. We then examined how maternal condition at the time of gametogenesis affects the relationships among early life-history traits and survivorship during early development of the coral reef fish Pomacentrus amboinensis. 3. Maternal condition did not affect the number of embryos that hatched or the number of hatchlings surviving to a set time. 4. We found no significant difference in egg size in relation to the maternal physiological state. However, eggs spawned by supplemented mothers were provisioned with greater energy reserves (yolk-sac and oil globule size) than nonsupplemented counterparts, suggesting that provision of energy reserves rather than egg size more closely reflected the maternal environment. 5. Among offspring originating from supplemented mothers, those with larger yolk-sacs were more likely to successfully hatch and survive for longer periods after hatching. However, among offspring from nonsupplemented mothers, yolk-sac size was either inconsequential to survival or offspring with smaller yolk-sac sizes were favoured. Mothers appear to influence the physiological capacity of their progeny and in turn the efficiency of individual offspring to utilize endogenous reserves. 6. In summary, our results show that the maternal environment influences the relationship between offspring characteristics and survival and suggest that energy-driven selective mechanisms may operate to determine progeny viability.  相似文献   

19.
Inbreeding depression occurs when individuals who are closely related mate and produce offspring with reduced fitness. Although inbreeding depression is a genetic phenomenon, the magnitude of inbreeding depression can be influenced by environmental conditions and parental effects. In this study, we tested whether size-based parental effects influence the magnitude of inbreeding depression in an insect with elaborate and obligate parental care (the burying beetle, Nicrophorus orbicollis). We found that larger parents produced larger offspring. However, larval mass was also influenced by the interaction between parental body size and larval inbreeding status: when parents were small, inbred larvae were smaller than outbred larvae, but when parents were large this pattern was reversed. In contrast, survival from larval dispersal to adult emergence showed inbreeding depression that was unaffected by parental body size. Our results suggest that size-based parental effects can generate variation in the magnitude of inbreeding depression. Further work is needed to dissect the mechanisms through which this might occur and to better understand why parental size influences inbreeding depression in some traits but not others.  相似文献   

20.
Inbreeding depression has been reported in various groups of organisms, including insects. Estimates of inbreeding consequences were obtained by comparing 12 life‐history and morphological traits among nine inbred families (F = 0.25) and 16 outbred families (F = 0) of the Neotropical butterfly Heliconius erato phyllis. A Student's t‐test showed statistically significant differences for pupal weight and right forewing area, both in males and in females, between inbred and outbred families. Survival during development, from egg hatching to adulthood, also differed significantly between inbred and outbred families. The average number of haploid lethal equivalents was 0.17 for pupal weight, 0.15 for forewing area and 0.71 for survival from hatching to adulthood. The results of this study confirm that the consequences of inbreeding are more deleterious to life history traits than to morphological ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号