首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.

Background

Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health''s influenza surveillance system.

Methodology and Findings

We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003–2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic.

Conclusions

These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs.  相似文献   

2.

Background

Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available.

Methodology and Findings

We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation = 62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics.

Conclusions

These findings highlight the complex nature of influenza spread across multiple geographic scales.  相似文献   

3.

Introduction

Fine-grained influenza surveillance data are lacking in the US, hampering our ability to monitor disease spread at a local scale. Here we evaluate the performances of high-volume electronic medical claims data to assess local and regional influenza activity.

Material and Methods

We used electronic medical claims data compiled by IMS Health in 480 US locations to create weekly regional influenza-like-illness (ILI) time series during 2003–2010. IMS Health captured 62% of US outpatient visits in 2009. We studied the performances of IMS-ILI indicators against reference influenza surveillance datasets, including CDC-ILI outpatient and laboratory-confirmed influenza data. We estimated correlation in weekly incidences, peak timing and seasonal intensity across datasets, stratified by 10 regions and four age groups (<5, 5–29, 30–59, and 60+ years). To test IMS-Health performances at the city level, we compared IMS-ILI indicators to syndromic surveillance data for New York City. We also used control data on laboratory-confirmed Respiratory Syncytial Virus (RSV) activity to test the specificity of IMS-ILI for influenza surveillance.

Results

Regional IMS-ILI indicators were highly synchronous with CDC''s reference influenza surveillance data (Pearson correlation coefficients rho≥0.89; range across regions, 0.80–0.97, P<0.001). Seasonal intensity estimates were weakly correlated across datasets in all age data (rho≤0.52), moderately correlated among adults (rho≥0.64) and uncorrelated among school-age children. IMS-ILI indicators were more correlated with reference influenza data than control RSV indicators (rho = 0.93 with influenza v. rho = 0.33 with RSV, P<0.05). City-level IMS-ILI indicators were highly consistent with reference syndromic data (rho≥0.86).

Conclusion

Medical claims-based ILI indicators accurately capture weekly fluctuations in influenza activity in all US regions during inter-pandemic and pandemic seasons, and can be broken down by age groups and fine geographical areas. Medical claims data provide more reliable and fine-grained indicators of influenza activity than other high-volume electronic algorithms and should be used to augment existing influenza surveillance systems.  相似文献   

4.

Background

There is limited information on influenza and respiratory syncytial virus (RSV) seasonal patterns in tropical areas, although there is renewed interest in understanding the seasonal drivers of respiratory viruses.

Methods

We review geographic variations in seasonality of laboratory-confirmed influenza and RSV epidemics in 137 global locations based on literature review and electronic sources. We assessed peak timing and epidemic duration and explored their association with geography and study settings. We fitted time series model to weekly national data available from the WHO influenza surveillance system (FluNet) to further characterize seasonal parameters.

Results

Influenza and RSV activity consistently peaked during winter months in temperate locales, while there was greater diversity in the tropics. Several temperate locations experienced semi-annual influenza activity with peaks occurring in winter and summer. Semi-annual activity was relatively common in tropical areas of Southeast Asia for both viruses. Biennial cycles of RSV activity were identified in Northern Europe. Both viruses exhibited weak latitudinal gradients in the timing of epidemics by hemisphere, with peak timing occurring later in the calendar year with increasing latitude (P<0.03). Time series model applied to influenza data from 85 countries confirmed the presence of latitudinal gradients in timing, duration, seasonal amplitude, and between-year variability of epidemics. Overall, 80% of tropical locations experienced distinct RSV seasons lasting 6 months or less, while the percentage was 50% for influenza.

Conclusion

Our review combining literature and electronic data sources suggests that a large fraction of tropical locations experience focused seasons of respiratory virus activity in individual years. Information on seasonal patterns remains limited in large undersampled regions, included Africa and Central America. Future studies should attempt to link the observed latitudinal gradients in seasonality of viral epidemics with climatic and population factors, and explore regional differences in disease transmission dynamics and attack rates.  相似文献   

5.

Background

Determining the factors underlying the long-range spatial spread of infectious diseases is a key issue regarding their control. Dengue is the most important arboviral disease worldwide and a major public health problem in tropical areas. However the determinants shaping its dynamics at a national scale remain poorly understood. Here we describe the spatial-temporal pattern of propagation of annual epidemics in Cambodia and discuss the role that human movements play in the observed pattern.

Methods and Findings

We used wavelet phase analysis to analyse time-series data of 105,598 hospitalized cases reported between 2002 and 2008 in the 135 (/180) most populous districts in Cambodia. We reveal spatial heterogeneity in the propagation of the annual epidemic. Each year, epidemics are highly synchronous over a large geographic area along the busiest national road of the country whereas travelling waves emanate from a few rural areas and move slowly along the Mekong River at a speed of ∼11 km per week (95% confidence interval 3–18 km per week) towards the capital, Phnom Penh.

Conclusions

We suggest human movements – using roads as a surrogate – play a major role in the spread of dengue fever at a national scale. These findings constitute a new starting point in the understanding of the processes driving dengue spread.  相似文献   

6.

Background

Clinical surveillance may have underestimated the real extent of the spread of the new strain of influenza A/H1N1, which surfaced in April 2009 originating the first influenza pandemic of the 21st century. Here we report a serological investigation on an influenza A/H1N1pdm outbreak in an Italian military ship while cruising in the Mediterranean Sea (May 24-September 6, 2009).

Methods

The contemporary presence of HAI and CF antibodies was used to retrospectively estimate the extent of influenza A/H1N1pdm spread across the crew members (median age: 29 years).

Findings

During the cruise, 2 crew members fulfilled the surveillance case definition for influenza, but only one was laboratory confirmed by influenza A/H1N1pdm-specific RT-PCR; 52 reported acute respiratory illness (ARI) episodes, and 183 reported no ARI episodes. Overall, among the 211 crew member for whom a valid serological result was available, 39.3% tested seropositive for influenza A/H1N1pdm. The proportion of seropositives was significantly associated with more crowded living quarters and tended to be higher in those aged <40 and in those reporting ARI or suspected/confirmed influenza A/H1N1pdm compared to the asymptomatic individuals. No association was found with previous seasonal influenza vaccination.

Conclusions

These findings underline the risk for rapid spread of novel strains of influenza A in confined environment, such as military ships, where crowding, rigorous working environment, physiologic stress occur. The high proportion of asymptomatic infections in this ship-borne outbreak supports the concept that serological surveillance in such semi-closed communities is essential to appreciate the real extent of influenza A/H1N1pdm spread and can constitute, since the early stage of a pandemic, an useful model to predict the public health impact of pandemic influenza and to establish proportionate and effective countermeasures.  相似文献   

7.

Background

There is limited information about the epidemiology of influenza in Africa. We describe the epidemiology and seasonality of influenza in Morocco from 1996 to 2009 with particular emphasis on the 2007–2008 and 2008–2009 influenza seasons. Successes and challenges of the enhanced surveillance system introduced in 2007 are also discussed.

Methods

Virologic sentinel surveillance for influenza virus was initiated in Morocco in 1996 using a network of private practitioners that collected oro-pharyngeal and naso-pharyngeal swabs from outpatients presenting with influenza-like-illness (ILI). The surveillance network expanded over the years to include inpatients presenting with severe acute respiratory illness (SARI) at hospitals and syndromic surveillance for ILI and acute respiratory infection (ARI). Respiratory samples and structured questionnaires were collected from eligible patients, and samples were tested by immunofluorescence assays and by viral isolation for influenza viruses.

Results

We obtained a total of 6465 respiratory specimens during 1996 to 2009, of which, 3102 were collected during 2007–2009. Of those, 2249 (72%) were from patients with ILI, and 853 (27%) were from patients with SARI. Among the 3,102 patients, 98 (3%) had laboratory-confirmed influenza, of whom, 85 (87%) had ILI and 13 (13%) had SARI. Among ILI patients, the highest proportion of laboratory-confirmed influenza occurred in children less than 5 years of age (3/169; 2% during 2007–2008 and 23/271; 9% during 2008–2009) and patients 25–59 years of age (8/440; 2% during 2007–2009 and 21/483; 4% during 2008–2009). All SARI patients with influenza were less than 14 years of age. During all surveillance years, influenza virus circulation was seasonal with peak circulation during the winter months of October through April.

Conclusion

Influenza results in both mild and severe respiratory infections in Morocco, and accounted for a large proportion of all hospitalizations for severe respiratory illness among children 5 years of age and younger.  相似文献   

8.
Zhang T  Fu X  Ma S  Xiao G  Wong L  Kwoh CK  Lees M  Lee GK  Hung T 《PloS one》2012,7(3):e32203

Background

It is believed that combined interventions may be more effective than individual interventions in mitigating epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions under different temporal settings.

Methodology/Principal Findings

To better understand the problem, we develop an individual-based simulation model running on top of contact networks based on real-life contact data in Singapore. We model and evaluate the spread of influenza epidemic with intervention strategies of workforce shift and its combination with school closure, and examine the impacts of temporal factors, namely the trigger threshold and the duration of an intervention. By comparing simulation results for intervention scenarios with different temporal factors, we find that combined interventions do not always outperform individual interventions and are more effective only when the duration is longer than 6 weeks or school closure is triggered at the 5% threshold; combined interventions may be more effective if school closure starts first when the duration is less than 4 weeks or workforce shift starts first when the duration is longer than 4 weeks.

Conclusions/Significance

We therefore conclude that identifying the appropriate timing configuration is crucial for achieving optimal or near optimal performance in mitigating the spread of influenza epidemic. The results of this study are useful to policy makers in deliberating and planning individual and combined interventions.  相似文献   

9.
10.

Background

Injecting drug use continues to be a primary driver of HIV epidemics in many parts of the world. Many people who inject drugs (PWID) are sexually active, so it is possible that high-seroprevalence HIV epidemics among PWID may initiate self-sustaining heterosexual transmission epidemics.

Methods

Fourteen countries that had experienced high seroprevalence (<20%) HIV epidemics among PWID and had reliable data for injection drug use (IDU) and heterosexual cases of HIV or AIDS were identified. Graphs of newly reported HIV or AIDS cases among PWID and heterosexuals were constructed to identify temporal relationships between the two types of epidemics. The year in which newly reported cases among heterosexuals surpassed newly reported cases among PWID, aspects of the epidemic curves, and epidemic case histories were analyzed to assess whether it was “plausible” or “highly unlikely” that the HIV epidemic among PWID might have initiated the heterosexual epidemic in each country.

Results

Transitions have occurred in 11 of the 14 countries. Two types of temporal relationships between IDU and heterosexual HIV epidemics were identified, rapid high incidence transitions vs. delayed, low incidence transitions. In six countries it appears “plausible” that the IDU epidemic initiated a heterosexual epidemic, and in five countries it appears “highly unlikely” that the IDU epidemic initiated a heterosexual epidemic. A rapid decline in incidence among PWID after the peak year of new cases and national income were the best predictors of the “highly unlikely” initiation of a heterosexual epidemic.

Discussion

Transitions from IDU concentrated epidemics to heterosexual epidemics are common in countries with high seroprevalence among PWID though there are distinct types of transitions. Interventions to immediately reduce HIV incidence among PWID may reduce the likelihood that an IDU epidemic may initiate a heterosexual epidemic.  相似文献   

11.

Background

Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections.

Methods and Findings

Influenza activity data from 2003–04 through 2007–08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson''s correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson''s correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003–04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90).

Conclusions

This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003–04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior.  相似文献   

12.

Background

In the aftermath of the global spread of 2009 influenza A (pH1N1) virus, still very little is known of the early stages of the outbreak in Mexico during the early months of the year, before the virus was identified.

Methodology/Main Findings

We fit a simple mathematical model, the Richards model, to the number of excess laboratory-confirmed influenza cases in Mexico and Mexico City during the first 15 weeks in 2009 over the average influenza case number of the previous five baseline years of 2004-2008 during the same period to ascertain the turning point (or the peak incidence) of a wave of early influenza infections, and to estimate the transmissibility of the virus during these early months in terms of its basic reproduction number. The results indicate that there may have been an early epidemic in Mexico City as well as in all of Mexico during February/March. Based on excess influenza cases, the estimated basic reproduction number R0 for the early outbreak was 1.59 (0.55 to 2.62) for Mexico City during weeks 5–9, and 1.25 (0.76, 1.74) for all of Mexico during weeks 5–14.

Conclusions

We established the existence of an early epidemic in Mexico City and in all of Mexico during February/March utilizing the routine influenza surveillance data, although the location of seeding is unknown. Moreover, estimates of R0 as well as the time of peak incidence (the turning point) for Mexico City and all of Mexico indicate that the early epidemic in Mexico City in February/March had been more transmissible (larger R0) and peaked earlier than the rest of the country. Our conclusion lends support to the possibility that the virus could have already spread to other continents prior to the identification of the virus and the reporting of lab-confirmed pH1N1 cases in North America in April.  相似文献   

13.

Background

The epidemic sizes of influenza A/H3N2, A/H1N1, and B infections vary from year to year in the United States. We use publicly available US Centers for Disease Control (CDC) influenza surveillance data between 1997 and 2009 to study the temporal dynamics of influenza over this period.

Methods and Findings

Regional outpatient surveillance data on influenza-like illness (ILI) and virologic surveillance data were combined to define a weekly proxy for the incidence of each strain in the United States. All strains exhibited a negative association between their cumulative incidence proxy (CIP) for the whole season (from calendar week 40 of each year to calendar week 20 of the next year) and the CIP of the other two strains (the complementary CIP) from the start of the season up to calendar week 2 (or 3, 4, or 5) of the next year. We introduce a method to predict a particular strain''s CIP for the whole season by following the incidence of each strain from the start of the season until either the CIP of the chosen strain or its complementary CIP exceed certain thresholds. The method yielded accurate predictions, which generally occurred within a few weeks of the peak of incidence of the chosen strain, sometimes after that peak. For the largest seasons in the data, which were dominated by A/H3N2, prediction of A/H3N2 incidence always occurred at least several weeks in advance of the peak.

Conclusion

Early circulation of one influenza strain is associated with a reduced total incidence of the other strains, consistent with the presence of interference between subtypes. Routine ILI and virologic surveillance data can be combined using this new method to predict the relative size of each influenza strain''s epidemic by following the change in incidence of a given strain in the context of the incidence of cocirculating strains. Please see later in the article for the Editors'' Summary  相似文献   

14.
Kim HS  Choi HC  Cho B  Lee JY  Kwon MJ 《PloS one》2011,6(8):e23444

Background

EKC is transmitted chiefly by direct hand contact. It is suspected that the 2009/2010 influenza pandemic influenced hand washing. This study aims to examine the relationship between the 2009/2010 H1N1 influenza pandemic and hygiene behavior.

Methods

We compared the EKC prevalence trends before, during and after the 2009/2010 influenza pandemic by using a t-test comparison of EKC sentinel surveillance.

Results

During the pre-pandemic period, the incidence of EKC increased from the 21st to the 44th week each year. However, during the pandemic period in 2009, there was no epidemic peak. In the post-pandemic period, the epidemic curve was similar to that in the pre-pandemic period. Compared to the pre-pandemic period, the total number of EKC patients during the pandemic period showed a decrease of 44.9% (t value = −7.23, p = 0.002). Comparing the pre-pandemic and pandemic periods by age group, we found there to be a significant decrease in the number of EKC patients for all age groups (−4.12≤t value≤−7.23, all P<0.05). This finding was most evident in the teenage group (62%) compared to the other age groups (decreases of 29 to 44%).

Conclusions

A continuing effort should be made to educate the public on basic infection prevention behaviors in the aftermath of the pandemic, particularly to teenagers.  相似文献   

15.
16.
Widgren K  Nielsen J  Mølbak K 《PloS one》2010,5(11):e13939

Background

To follow the impact of the 2009 influenza pandemic in Denmark, influenza surveillance was extended with a system monitoring potentially influenza-associated hospitalisations.

Methodology/Principal Findings

National administrative data from 2004–2010 from the automatic reporting of all hospital visits and admissions in Denmark (population 5.5 million) were used. In-patient hospitalisations linked to ICD-10 codes for potentially influenza-associated conditions (influenza, viral and bacterial pneumonia, respiratory distress, and febrile convulsion) were aggregated by week and age groups; <5 years, 5–24 years, 25–64 years and ≥65 years. Weekly numbers of influenza-associated hospitalisations were plotted to follow the course of the pandemic. We calculated the total numbers of influenza-associated hospitalisations in each influenza season (week 30 to week 15, the following year). Risk ratios of being admitted with an influenza-associated condition in this season (2009/2010) compared to the previous five seasons (2004/2005–2008/2009) were calculated using binary regression. During the pandemic season, influenza-associated hospitalisations peaked in week 47, 2009. The total number of influenza-associated hospitalisations was 38,273 compared to the median of previous seasons of 35,662 (p = 0.28). The risk ratio of influenza-associated hospitalisations during the pandemic season compared to previous seasons was 1.63 (95%CI 1.49–1.78) for 5–24 year-olds and ranged between 0.98 and 1.08 for the other three age groups.

Conclusions

The 2009 pandemic influenza did not lead to an overall increase in the number of influenza-associated hospitalisations in Denmark in the 2009/2010 season and could be managed within existing hospital capacity. However, there was a disproportionally large impact on the age group 5–24 years. The influenza-associated hospitalisations during the 2009/2010 pandemic influenza season bore the signature features of historical pandemics: A skewed age-pattern and early out of season transmission.  相似文献   

17.

Background

The optimal vaccination strategy to mitigate the impact of influenza epidemics is unclear. In 2005, a countywide school-based influenza vaccination campaign was launched in Knox County, Tennessee (population 385,899). Approximately 41% and 48% of eligible county children aged 5–17 years were immunized with live attenuated influenza vaccine before the 2005–2006 and 2006–2007 influenza seasons, respectively. We sought to determine the population impact of this campaign.

Methods

Laboratory-confirmed influenza data defined influenza seasons. We calculated the incidence of medically attended acute respiratory illness attributable to influenza in Knox and Knox-surrounding counties (concurrent controls) during consecutive seasons (5 precampaign and 2 campaign seasons) using negative binomial regression and rate difference methods. Age-stratified analyses compared the incidence of emergency department (ED) visits and hospitalizations attributable to influenza.

Results

During precampaign seasons, estimated ED visit rates attributable to influenza were 12.39 (95% CI: 10.34–14.44) per 1000 Knox children aged 5–17 years and similar in Knox-surrounding counties. During the campaign seasons, annual Knox influenza-associated ED visit rates declined relative to rates in Knox-surrounding counties: rate ratios 0.55 (95% CI: 0.27–0.83) and 0.70 (95% CI: 0.56–0.84) for the first and second campaign seasons, respectively. Overall, there were about 35% or 4.86 per 1000 fewer influenza-associated ED visits among Knox County children aged 5–17 years attributable to the campaign. No significant declines in Knox compared to surrounding counties were detected for influenza associated ED visits in children aged <5 years, all adults combined or selected adult age subgroups, although power for these analyses was limited. Alternate rate-difference analyses yielded consistent results.

Conclusion

Vaccination of approximately 45% of Knox school-aged children with influenza vaccine was associated with a 35% annual reduction (4.86 per 1000) in ED visit rates attributable to influenza. Higher vaccination coverage and/or larger studies would be needed to determine whether similar interventions have indirect benefits in other age groups.  相似文献   

18.

Objective

To evaluate the new Japanese School Absentees Reporting System for Infectious Disease (SARSID) for pandemic influenza A/H1N1 2009 infection in comparison with the National epidemiological Surveillance of Infectious Disease (NESID).

Methods

We used data of 53,223 students (97.7%) in Takamatsu city Japan. Data regarding school absentees in SARSID was compared with that in NESID from Oct 13, 2009 to Jan 12, 2010.

Results

Similar trends were observed both in SARSID and NESID. However, the epidemic trend for influenza in SARSID was thought to be more sensitive than that in NESID.

Conclusion

The epidemic trend for influenza among school-aged children could be easily and rapidly assessed by SARSID compared to NESID. SARSID might be useful for detecting the epidemic trend of influenza.  相似文献   

19.

Background

The influenza A/H1N1/09 pandemic spread quickly during the Southern Hemisphere winter in 2009 and reached epidemic proportions within weeks of the official WHO alert. Vulnerable population groups included indigenous Australians and remote northern population centres visited by international travellers. At the height of the Australian epidemic a large number of troops converged on a training area in northern Australia for an international exercise, raising concerns about their potential exposure to the emerging influenza threat before, during and immediately after their arrival in the area. Influenza A/H1N1/09 became the dominant seasonal variant and returned to Australia during the Southern winter the following year.

Methods

A duplex nucleic acid amplification assay was developed within weeks of the first WHO influenza pandemic alert, demonstrated in northwestern Australia shortly afterwards and deployed as part of the pathology support for a field hospital during a military exercise during the initial epidemic surge in June 2009.

Results

The nucleic acid amplification assay was twice as sensitive as a point of care influenza immunoassay, as specific but a little less sensitive than the reference laboratory nucleic acid amplification assay. Repetition of the field assay with blinded clinical samples obtained during the 2010 winter influenza season demonstrated a 91.7% congruence with the reference laboratory method.

Conclusions

Rapid in-house development of a deployable epidemic influenza assay allowed a flexible laboratory response, effective targeting of limited disease control resources in an austere military environment, and provided the public health laboratory service with a set of verification tools for resource-limited settings. The assay method was suitable for rapid deployment in time for the 2010 Northern winter.  相似文献   

20.

Background

In Finland, the first infections caused by the 2009 pandemic influenza A(H1N1) virus were identified on May 10. During the next three months almost all infections were found from patients who had recently traveled abroad. In September 2009 the pandemic virus started to spread in the general population, leading to localized outbreaks and peak epidemic activity was reached during weeks 43–48.

Methods/Results

The nucleotide sequences of the hemagglutinin (HA) and neuraminidase (NA) genes from viruses collected from 138 patients were determined. The analyzed viruses represented mild and severe infections and different geographic regions and time periods. Based on HA and NA gene sequences, the Finnish pandemic viruses clustered in four groups. Finnish epidemic viruses and A/California/07/2009 vaccine virus strain varied from 2–8 and 0–5 amino acids in HA and NA molecules, respectively, giving a respective maximal evolution speed of 1.4% and 1.1%. Most amino acid changes in HA and NA molecules accumulated on the surface of the molecule and were partly located in antigenic sites. Three severe infections were detected with a mutation at HA residue 222, in two viruses with a change D222G, and in one virus D222Y. Also viruses with change D222E were identified. All Finnish pandemic viruses were sensitive to oseltamivir having the amino acid histidine at residue 275 of the neuraminidase molecule.

Conclusions

The Finnish pandemic viruses were quite closely related to A/California/07/2009 vaccine virus. Neither in the HA nor in the NA were changes identified that may lead to the selection of a virus with increased epidemic potential or exceptionally high virulence. Continued laboratory-based surveillance of the 2009 pandemic influenza A(H1N1) is important in order to rapidly identify drug resistant viruses and/or virus variants with potential ability to cause severe forms of infection and an ability to circumvent vaccine-induced immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号