首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
Hemp  Andreas 《Plant Ecology》2002,159(2):211-239
140 taxa of 61 genera in 24 families of pteridophytes were recorded on the southern slopes of Mt. Kilimanjaro. These represent about one third of the entire pteridophyte flora of Tanzania. The families richest in species are the Aspleniaceae, the Adiantaceae, the Dryopteridaceae, the Thelypteridaceae and the Hymenophyllaceae. Due to its luxuriant montane rain forest, which receives a precipitation of up to over 3000 mm, Mt. Kilimanjaro is distinctly richer in pteridophyte species than other volcanoes in East Africa. However, compared with the mountains of the Eastern Arc, the number of pteridophytes on Mt. Kilimanjaro is smaller. This can be explained by the widely destroyed submontane (intermediate) forest rather than by the higher age of the Eastern Arc Mts.The altitudinal distribution of all ferns was investigated in 24 transects. On the southern slopes of Mt. Kilimanjaro they were found in an altitudinal range of 3640 m. Cyclosorus quadrangularis, Azolla nilotica, Azolla africana andMarsilea minuta are restricted to the foothills, while Polystichum wilsonii, Cystopteris nivalis and Asplenium adiantum-nigrum are species found in the highest altitudes.Based on unidimensionally constrained clustering and on the analysis of the lowermost and uppermost occurrence of species, floristic discontinuities within the transects were determined. From these data and from an evaluation of the distribution of ecological groups and life forms, 11 altitudinal zones could be distinguished: a colline zone (–900 m asl), a submontane zone (900–1600 m asl) with lower and upper subzones, a montane zone (1600-2800 m asl) divided into 4 subzones, a subalpine zone (2800–3900 m asl) with lower, middle and upper subzones, and finally a (lower) alpine zone above 3900 m. The highest species numbers were observed in the lower montane forest belt between 1600 and 2000 m altitude. The zonation of ferns found at Mt. Kilimanjaro corresponds well with the vegetational zonation described by other authors using bryophytes as indicators in different parts of the humid tropics.  相似文献   

2.
Geographical patterns of altitudinal zonation, floristic composition, and structural features of tropical montane rain forests were examined along latitudinal gradients in south and east Asia. On equatorial mountains, the tropical montane rain forests occur above 1000 m. Toward middle latitudes, they come farther down and reach sea level at c. 35° N. Thus, the forests are equivalent to the subtropical rain forests of the latitudinal, horizontal zonation series. They exhibit gradual changes in floristic composition and structure along both altitudinal and latitudinal gradients. On equatorial mountains, they are divided into three types, i.e. tropical lower montane, upper montane, and subalpine forests. The three tree regeneration types, having emergent, sporadic and inverse-J type stem-diameter class frequency distributions, coexist in the lower montane forests, but the upper and subalpine forests display only the inverse-J type species with a few species of the sporadic type. Toward the northern latitudinal limit, the distinction between the three tropical montane forest zones in equatorial mountains becomes less clear. This can be explained by temperature conditions: on equatorial mountains, a temperature sum of 85° C months which controls the upper limit of the lower montane forests, and a coldest month mean temperature of-1° C which controls the evergreen broad-leaved trees, appear at c. 2500 and c. 4000 m respectively. The altitudinal range between 2500 m and 3800 m, which is the upper forest limit, is covered by upper montane and subalpine forests. On the other hand, at the latitudinal northern limit, the tropical upper montane and subalpine forests cannot exist because the above mentioned two temperature conditions occur at nearly the same point. Thus, at the northern latitudinal limit of the tropical montane forests, the three zones of equatorial mountains amalgamate into a single subtropical lowland forest community. This is due to the seasonal temperature climate in middle latitudes in, e.g., central Japan and central China.A part of this paper was presented as an oral presentation at the Vth International Congress of Ecology, Yokohama 23–30.8.1990.  相似文献   

3.
A new scheme of altitudinal and latitudinal vegetation zonation is proposed for eastern Asia. The latitudinal patterns of mountain vegetation zonation show a clear boundary at ca. 20°–30° N. For the tropical mountains south of 20° N, the altitudinal series includes tropical lowland, tropical lower montane, and tropical upper montane zones. For the temperate mountains north of 30° N, the series includes temperate lowland, temperate lower montane, and temperate upper montane zones. The mountains located between 20° and 30° N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30° N, while the tropical lower montane zone reaches down to sea level and constitutes the temperate lowland zone. Thus the zonation between 20° and 30° N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones. The latitudinal series of lowland rain forests follows the scheme of climatic division into tropical, subtropical/warm-temperate, cool-temperate and cold-temperate, with a shift of the respective life forms, evergreen, evergreen notophyllous, deciduous, and evergreen needle-leaved. The tropical lower montane forest can be correlated to the horizontal subtropical/ warm-temperate zone. The temperate altitudinal and latitudinal zonations above 30° N are correlated and show an inclined parallel pattern from high altitudes in the south to low altitudes down to sea level in the north.  相似文献   

4.
Abiotic and vegetation data were collected along two altitudinal transects through mature montane Quercus forests on the Pacific and Atlantic slopes of Costa Rica's Chirripó Massif. Between 2000 and 3200 m asl twenty-four 0.05 ha forest plots were selected at altitudinal intervals of 100 m, and eight soil profiles were described at intervals of 200 m. A TWINSPAN classification aided in the determination of eight zonal forest communities on the basis of their floristic composition. They are grouped in two sets of four: (i) the palm-rich lauraceous-fagaceous Lower Montane Mollinedia-Quercus Forests (2000–2600 m asl) and (ii) the bamboo-rich myrsinaceous-fagaceous Upper Montane Schefflera-Quercus Forests (2500–3200 m asl), respectively. Vegetation changes seem correlated with two major climatic gradients: (i) a temperature gradient (altitude), and (ii) a moisture gradient (wet Atlantic vs. moist Pacific slope). Most soils are Andepts, and residual, colluvial or derived from volcanic material. Humus layers are thicker on the wetter Atlantic slope. A total of 431 vascular plant species consisted of 86 pteridophytes, 1 gymnosperm, 296 dicots and 48 monocots. Species richness, canopy height and stem diameter decrease with increasing altitude, while the canopy surface becomes more flattend. A comparison with other studies shows that Chirripó's montane Quercus forests fit within the environmental ranges known from altitudinal zonations elsewhere in the Tropics.Abbreviations asl above sea level - dbh diameter at breast height - LM Lower Montane - Mt. Mountain - TWINSPAN two way indicator species analysis - UM Upper Montane - VU code referring to soil profiles as presented in Van Uffelen (1991) This paper is dedicated to the memory of Alwyn H. Gentry, an outstanding and inspiring tropical botanist who tragically died in a plane crash in the mountains of Ecuador on August 3 1993, when surveying possible boundaries for a new tropical cloud forest reserve.  相似文献   

5.
Pérez del Val, J. 2000. On the altitudinal limits of birds on Basile Peak (Bioko Island; Equatorial Guinea). Ostrich 71(1 & 2): 342.

The lower altitudinal limit of the montane avifauna in Africa has generally been set at 1 500- 800 m, corresponding to vegetation belts of the main mountain ranges of East Africa. However, much lower limits have been reported from the East Usambaras (Tanzania), Mount Cameroon, and Bioko Island. Basilé Peak is a volcano of 3 011 m which constitutes the northern half of Bioko Island. Below 400–900 m the forest has been logged and largely replaced by cocoa plantations, but the vegetation is relatively undisturbed at higher altitudes. Annual rainfall ranges between 2 000 mm and 3 500 mm. From January 1990 to July 1992 mist-nets were set at 13 standardised stations on Basilé Peak; 1 427 birds of 71 species were captured. Previous data from non-standardised mist-netting at 6 other localities, together with sight and sound records, published data, and 1 047 skins in the collections of Museo Naçional de Ciençias Naturales (Madrid), Estacion Biologica de Donaiia (Sevilla) and the Natural History Museum (Tring) were also used to compile distribution lists. From published botanical surveys, I recognised four vegetation zones: Lowland Rain Forest up to 800 m; Mountain Rain Forest at 80CL1 800 m; Araliaceus Forest 1 800–2 500 m; and Ericaceus Stands above 2 500 m. An analysis of similarity (using the index of Czechanowski) grouped 68 bird species into altitudinal classes at 200 m intervals. This suggests a division between lowland and montane birds at 800–1 000 m, broadly coinciding with the change between Lowland and Mountain Rain Forest. There does not seem to be a discrete bird community restricted to either of the upper zones (Araliaceus Forest or Ericaeus Stands), with only the Yellow Bishop Euplectes capensis restricted to the upper 500 m of the mountain. Most species which reach the summit are found in all vegetation zones, notably the endemic subspecies of the African Goshawk Accipiter tachiro lopezi. It is suggested that low temperatures, high rainfall, and in particular the seasonal distribution of rainfall, may explain the lower altitudinal limits of the montane avifauna on Bioko and on Mount Cameroon.  相似文献   

6.
我国森林植被带的生态气候学分析   总被引:39,自引:3,他引:36  
方精云 《生态学报》1991,11(4):377-387
  相似文献   

7.
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.  相似文献   

8.
Abstract. Spatial distribution patterns of alien plant species were compared with those of native species on a windward slope of Mt. Haleakala (3055 m). Oceanic islands are considered susceptible to biological invasion, and this study numerically tested this circumstantial evidence with the following questions: Are all habitats equally susceptible; and, do successful invaders have wider realized niches than natives? The mountain slope consists of three distinct altitudinal bioclimatic zones (hot moist lowland, wet montane cloud, and cool arid high-altitude zones). Ordination indicated that alien species' ranges and population expansions were clustered in the lowland and high-altitude zones. The lowland zone had been subjected to natural canopy dieback, and the high-altitude zone to grazing by domestic and feral ungulates. By contrast, the montane cloud forest was relatively intact in terms of number and cover of native species. Thus, susceptibility to alien invasion clearly differed among zones, and the primary causes seemed to be the obvious disturbance factors. The mean ecological range along the altitude-rainfall gradient was significantly (P < 0.05) greater for native than for alien species in most life-form groups. The reasons for the greater number of climate generalists among the natives vs. the range-restricted aliens appear to be related to: (1) the pre-alien condition with a depauperate flora which allowed for ‘ecological release’ of successful native colonizers, and (2) the climatic pre-adaptation of alien invaders which restricts them from penetrating over a broader spectrum of climatic zones in a floristic matrix subjected to increasing interspecific competition.  相似文献   

9.
Summary The occurrence of Crassulacean acid metabolism (CAM), as judged from 13C values, was investigated in epiphytes and some related plant species at a series of sites covering the approximate altitudinal range of epiphytes in Papua New Guinea. Comprehensive collections were made at each site and the occurrence of water storage tissue and blade thickness was also determined. Some 26% of epiphytic orchids from a lowland rainforest (2–300 m.a.s.l) showed 13C values typical of obligate CAM and possessed leaves thicker than 1 mm. A second group of orchids, mostly with succulent leaves, possessed intermediate 13C values between -23 and -26% and accounted for 25% of the total species number. Some species of this group may exhibit weak CAM or be facultative CAM plants. The remainder of the lowland rainforest species appeared to be C3 plants with 13C values between -28 and -35%. and generally possessed thin leaves. Obligate CAM species of orchids from a lower montane rainforest (1175 m.a.s.l) comprised 26% of the species total and mostly possessed thick leaves. The remainder of the species were generally thin-leaved with 13C values between -26 and -35%. largely indicative of C3 photosynthesis. Orchids with intermediate 13C values were not found in the lower montane rainforest. Obligate CAM appeared to be lacking in highland epiphytes from an upper montane rainforest and subalpine rainforest (2600–3600 m.a.s.l). However the fern, Microsorium cromwellii had a 13C value of -21.28%. suggesting some measure of CAM activity. Other highland ferns and orchids showed more negative °13C values, up to-33%., typical of C3 photosynthesis. The highland epiphytic orchids possessed a greater mean leaf thickness than their lowland C3 counterparts due to the frequent occurrence of water storage tissue located on the adaxial side of the leaf. It is suggested that low daytime temperatures in the highland microhabitats is a major factor in explaining the absence of CAM. The increased frequency of water storage tissue in highland epiphytes may be an adaptation to periodic water stress events in the dry season and/or an adaptation to increased levels of UV light in the tropicalpine environment.  相似文献   

10.
Cleavitt  Natalie 《Plant Ecology》2004,174(2):205-216
Factors that set the altitudinal limits of plants have been relatively well explored for many land plant groups, but not for bryophytes. Bryophytes typically represent a significant portion of alpine floras with many species specific to highland systems. Differences between highland and lowland bryophytes have been underinvestigated. In the present study spanning three growing seasons, a subalpine and a lowland moss were both reciprocally planted as apical fragments and transplanted as adults between sites at 1400 m and 2000 m in the Front Ranges of the Rocky Mountains, Alberta. The lowland species, Mnium spinulosum, was less tolerant of conditions at 2000 m than the subalpine species, M. arizonicum, was to conditions at 1400 m. In particular, M. spinulosum had lower establishment from both apical fragments and spores at higher elevation sites. Both species had significantly lower establishment during the abnormally cold growing season of 1999, but fragments of M. arizonicum were better able to adjust their investment in establishment. The effect of a dominant feather moss, Hylocomium splendens, on establishment and transplant health was tested for M. arizonicum. Establishment of M. arizonicum was lower in Hylocomium mats than on bare humus regardless of site elevation suggesting allelopathy; however, stem survival in adult transplants was higher in Hylocomium mats than in Mnium dominated microsites at the higher elevation suggesting facilitation. Competition, rather than a lack of physiological plasticity, probably determines the lower elevation limit of the subalpine moss, while poor establishment ability at low temperatures accounts for the upper elevation limit of the montane moss. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
We use an extensive historical data set on bumble bee host choice collected almost 50 years ago by L. W. Macior (Melanderia 15:1–59, 1974) to examine how resource partitioning by bumble bees varies over a 2,700-m altitudinal gradient at four hierarchical scales: individual, colony, species and community. Bumble bee behavior, resource overlap between castes, and plant-bumble bee networks change with altitude in accordance with tightening temporal constraints on flowering and colony growth in alpine habitats. Individual bees were more likely to collect pollen from multiple sources at high altitude. Between-caste foraging niche overlap increased with altitude. Similarly, alpine forager networks were more highly nested than either subalpine or montane networks due to increased asymmetric specialization. However, interspecific resource partitioning showed a more complex spatial pattern with low niche overlap at intermediate altitude (subalpine) compared to montane (disturbed) and alpine (unproductive) sites. Results suggest that spatial variation in interspecific resource partitioning is driven by a shift in the behavior of long-tongued bumble bees. Long-tongued bumble bees specialized in the subalpine but generalized in montane and alpine zones. Our reanalysis of Macior’s data shows that bumble bee behavior varies substantially with altitude influencing plant-bumble bee interaction networks. Results imply that pollination services to alpine host plants will change dramatically as subalpine species with unique foraging strategies move upward under global warming.  相似文献   

12.
We investigated the effects of roads on alpine and subalpine plant species distribution along an altitudinal gradient on Mount Norikura (3026 m a.s.l.), Japan. We examined the vegetation of herb and tree species shorter than 1.3 m along roadsides and adjacent natural vegetation at 200 m intervals between 1600 and 3000 m a.s.l. The timberline was at 2500 m a.s.l. Although the canopy opening was greater at the roadsides than in the natural vegetation, it was similar above the timberline. Soil cover and litter depth of the soil surface were less at roadsides than the natural vegetation, and gravel and rock cover were greater at roadsides. Species composition changed in similar directions from natural vegetation to roadsides along the altitudinal gradient. This direction was related to canopy opening and litter depth. Liliaceae, Ericaceae and Pinaceae were dominant families in the natural vegetation, and Asteraceae and Poaceae were greatest at the roadsides. Roadside plants were mostly herb species, while tree species increased in natural vegetation. Five exotic species were also observed at the roadsides. Sunny plant species gradually increased with altitude in the natural vegetation, indicated by the increase in canopy opening. By contrast, roadside plants were mostly sunny plant species irrespective of altitude. The number of lowland and montane species increased at the roadsides in the subalpine zone. Thus, roads strongly altered species composition of the natural vegetation along the altitudinal gradient probably because of changes in light and soil-surface conditions for growth and seedling establishment.  相似文献   

13.
Syuzo Itow 《Plant Ecology》1988,77(1-3):193-200
Alpha diversity, or species richness, of East Asian mainland evergreen broadleaved forests, expressed by indices of Fisher's alpha () and S(100), a new index showing species number in a 100-individual sample, is significantly correlated with the climatic favorableness, expressed by Kira's warmth index. On the contrary, diversity values of insular forests studied on Kyushu satellites of Japan, the Bonins, the Eastern Carolines of Micronesia, and the Galápagos in the eastern Pacific, are below those expected from the climate of respective oceanic islands. Species-individual curves, comparing mainland-and insular communities, also support clearly the above conclusion of species poverty in the insular communities studied.Abbreviations WI Kira's (1977) warmth index.  相似文献   

14.
Wang  Guohong  Zhou  Guangsheng  Yang  Limin  Li  Zhenqing 《Plant Ecology》2003,165(2):169-181
We studied the distribution pattern, species diversity and life-formspectra of plant communities along an altitudinal gradient in the mid-sectionofthe northern slopes of Qilianshan Mountains by means of multivariate analyses.Two data sets (167 species × 75 plots, 10 environmental variables ×75 plots), originated from the fieldworks in 1998–1999, were subjected toTWINSPAN and DCCA, resulting in 8 major plant communities: 1)Asterothamnus centraliasiaticus–Halogetonarachnoideus desert grassland on azonal substrates from 1450 to 1600m and 2) zonal Reaumuria soogorica desertgrassland on gravels from 1470 to 1900 m; 3) Stipaprzewalskii–Stipa purpurea montane grassland from 2200 to 2900m; 4) Polygonum viviparum alpine grasslandfrom 2900 to 3700 m; 5) Caraganastenophylla–Ajaniafruticulosa dry-warm shrubland from 2350 to 2800 m; 6)Sabina przewalskii mid-wet warm forest from 2700 to 3300m; 7) Picea crassifolia cold coniferousforestfrom 2450 to 3200 m; 8) Caragana jubatawet-cold alpine shrubland from 3100 to 3700 m. Species diversityand species richness of both grasslands and forests peaked at the intermediateportion of the elevational gradient. Evenness might be strongly influenced byeither biotic or abiotic factors at a local scale, while seems quiteindependentof an elevational gradient at landscape scales. Beta-diversity decreased from1500 to 3700 m, indicating that species turnover declined withincreased elevation. Both richness of life-form and total species richness in agiven altitudinal belt (gamma-diversity) peaked at intermediate elevations,while relative species richness of different life-form varied differently alongthe altitudinal gradient.  相似文献   

15.
Nonstructural carbohydrate (NSC) concentration in plant organs is an indicator of a balance between carbon sources (i.e., photosynthesis) and sinks (i.e., growth). Understanding how NSC concentrations change with altitude would help determine altitudinal changes in plant growth. This study compared shoot growth and seasonal changes in NSC concentrations of current-year and 1-year-old needles and branch woods between the upper and lower distribution limits of subalpine conifers Abies veitchii (1600–2000 m a.s.l.), A. mariesii (2000–2400 m a.s.l.), and Pinus pumila (2400–2800 m a.s.l.) in Japan. The lengths of 1-year-old shoots were shorter at the upper distribution limits for the three species, and concentrations and branch woods were all high in spring but decreased toward summer, increasing from summer to autumn. No clear difference was found for either parameter between upper and lower distribution limits for each species. Therefore, this study suggests that growth reduction at the upper distribution limits is due to reduction of both sink and source activities, with similar degrees for each species. However, further studies of sink and source activities, such as temperature-dependent photosynthesis and growth traits, are necessary to reveal clearly the cause of this growth reduction in high altitudes.  相似文献   

16.
The subalpine vegetation structure of Mt. Vysokaya, the Central Sikhote-Alin, is described. This vegetation consists mainly of subalpine spruce-fir forest, a complex of subalpine meadows, shrubs, groves of Betula lanata (B. ermanii s.l.), krummholz of Pinus pumila and alpine tundras. Significant disturbances in the vegetation structure were noted, especially in the forest-tundra ecotone accompanying a sharp reduction of the belts of Betula lanata and Pinus pumila. The altitudinal level of the upper timberline reaches 1600 m a.s.l. which is 250 m less than the expected altitude calculated by Kira's warmth index. An undergrowth of scattered trees of Picea and Betula are growing up to the mountain top. Based on these data and a review of the literature, we concluded that a catastrophic lowering of the timberline and devastation of the subalpine vegetation belt occurred several centuries ago, probably as result of fires.  相似文献   

17.
The authors examined relationships between Kira's warmth index (WI) and four other important thermal indices: the sums of daily mean temperatures above 5°C and 10°C, Thornthwaite's potential evapotranspiration (PE) and Holdridge's annual biotemperature. The thermal records of 671 meteorological stations evenly located all over China were used to make these comparisons. Close correlations were found within the four relationships, and accordingly WI was used to analyse the thermal distributions of the main vegetation types. Vegetation types around the 671 stations were read from a vegetation map with a scale of 1/4000000. Vegetation types at 269 stations corresponded to the natural or seminatural vegetation, and 29 vegetation types were distinguished by arranging the 269 data into the same or similar types. The geographical distribution of these 29 types and the corresponding main climatic features were described. The relations between WI and distribution of these vegetation types were discussed in detail. As a result, WI values (°C month) corresponding to the vegetation zones could be summarized as follows: (1) arctic or alpine vegetation zone: 0–15; (2) boreal or subalpine vegetation zone: 15-(50–55); (3) cool-temperate vegetation zone: (50–55)–(80–90); (4) warm-temperate vegetation zone: (80–90)–(170–180). These values almost coincided with Kira's values. Chinese postgraduate student in Japan sent by the Chinese Government.  相似文献   

18.
Protected areas (PAs) on tropical mountains undergo greater forest destruction in their lower altitudes. We compared the extent of forested, nonforested, and fragmented areas between lowland (<1000 m asl) and montane zones of the Blue Mountains inside the Blue and John Crow Mountains National Park established in Jamaica in 1993. We found that in 2008, inside the montane zone, only 4 percent of forest was cleared, and forest fragmentation was minimal. In the lowland zone, however, the percentage of forest cleared was seven times as high, and the density of fragments was 11-fold higher. We established twenty-five 0.04 ha lowland plots; ordination of tree species composition in these plots reflected a rainfall gradient, showing that plots on the wetter northern side of the Blue Mountains were floristically different from those on the drier southern side. The conservation value of the remaining lowland forest is high because of its high endemism (18% of species in our plots) and beta diversity. In addition, IUCN Red List data show that about 71 percent of threatened tree species in the Blue Mountains grow in the lowland region, 92 percent of which are endemic. From these findings, we identify a ‘protected area hotspot zone’, which lies between the PA boundary and the core high-altitude zone, and which should be instituted in IUCN categories I and II PAs.  相似文献   

19.
Three species of Corixidae (Hemiptera : Heteroptera) were studied in thirty montane, sub-alpine, and alpine ponds in Western Colorado. Callicorixa audeni Hung, had the widest altitudinal range (2800-3400 m). Cenocorixa bifida Hung, was most common in montane ponds. Arctocorisa lawsoni Hung, was found only above 3100 m. C. audeni was significantly associated with C. bifida and A. lawsoni. Habitat selection was studied in two montane (2900 m) and one alpine (3480 m) pond. C. audeni utilized both mud and emergent sedges as perching and feeding sites, occurring more frequently in the sedges in the montane ponds. C. bifida was confined to the mud. In the alpine pond, A. lawsoni was most abundant on the mud; C. audeni occurred equally on the mud and in the sedges. All three species preferred shallow water (less than 0·5 m). A. lawsoni occupied deeper water more often than C. audeni. In substrate selection experiments C. audeni occupied emergent sedges more than C. bifida, confirming field observations. C. bifida occurred in sedges in the aquaria, but not in the montane ponds, suggesting that an interspecific interaction may be excluding C. bifida from the sedges in nature.  相似文献   

20.
Burgess, N.D. & Mlingwa, C.O.F. 2000. Evidence for altitudinal migration of forest birds between montane Eastern Arc and lowland forests in East Africa. Ostrich 71 (1 & 2): 184–190.

In this paper we assess the evidence for altitudinal movements of forest birds from the montane forests of the Eastern Arc mountains of East Africa to nearby lowland forest patches. For 34 montane species, including all the Eastern Arc endemics except Banded Green Sunbird Anthreptes rubritorques there is no evidence that they undertake seasonal movements to lower altitudes. An additional 26 montane species, of somewhat wider distribution, have been recorded at low (<500 m) altitudes during the cold/dry season (June to September). Most records of these montane birds at lower altitudes are from sites adjoining montane forest areas, although a few records are from lowland coastal forests at 100–240 km distance from montane areas. Only five of the 26 species (White-chested Alethe Alethe fulleborni, White-starred Forest Robin Pogonocichla stellata, Orange Ground Thrush Zoothera gurneyi, Evergreen Forest Warbler Bradypterus mariae and Barred Long-tailed Cuckoo Cercococcyx montanus) are regularly and commonly reported in the lowlands. They are also found in the lowlands in small numbers during the warm/wet season (October to February), when they may breed. The abundance of at least four, and probably more, of the forest birds with a more widespread distribution in the lowland and montane forests of East Africa declines greatly at high altitudes from the onset of the cold/wet season (February) and only increases again at the start of the warm/wet season (September). It is not known how far these species move as they cannot be easily separated from resident populations in lowland forests, and there are no ringing recoveries in different forests. Altitudinal migration of a proportion of the Eastern Arc avifauna is the most likely explanation for available data, although source-sink metapopulation theories may be helpful to explain the distributions of some species. As the movement of forest birds from the Eastern Arc to the lowland forests does not involve the rare endemics, they are of lower conservation concern, but the presence of montane and lowland forest may be important for the long-term survival of some more widely distributed forest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号