首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ribulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations and their interactions on the photosynthetic limitation by RuBP regeneration. Soybean (Glycine max [L.] Merr. cv. Essex) was grown from seed to maturity in open-top field chambers in charcoal-filtered air (CF) either without (22 nmol O3 mol?1) or with added O3 (83 nmol mol?1) at ambient (AA, 369 μmol CO2 mol?1) or elevated CO2 (710 μmol mol?1). The RuBP pool size generally declined with plant age in all treatments when expressed on a unit leaf area and in all treatments but CF-AA when expressed per unit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) binding site. Although O3 in ambient CO2 generally reduced the RuBP pool per unit leaf area, it did not change the RuBP pool per unit Rubisco binding site. Elevated CO2, in CF or O3-fumigated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools were below 2 mol mol?1 binding site in all treatments for most of the season, indicating limiting RuBP regeneration capacity. These low RuBP pools resulted in increased RuBP regeneration via faster RuBP turnover, but only in CF air and during vegetative and flowering stages at elevated CO2. Also, the low RuBP pool sizes did not always reflect RuBP consumption rates or the RuBP regeneration limitation relative to potential carboxylation (%RuBP). Rather, %RuBP increased linearly with decrease in the RuBP pool turnover time. These data suggest that amelioration of damage from O3 by elevated atmospheric CO2 to the RuBP regeneration may be in response to changes in the Rubisco carboxylation.  相似文献   

2.
Our previous study has demonstrated that both RuBP carboxylation limitation and RuBP regeneration limitation exist simultaneously in rice grown under free-air CO2 enrichment (FACE, about 200 μmol mol−1 above the ambient air CO2 concentration) conditions [G.-Y. Chen, Z.-H. Yong, Y. Liao, D.-Y. Zhang, Y. Chen, H.-B. Zhang, J. Chen, J.-G. Zhu, D.-Q. Xu, Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylase limitation and ribulose-1,5-bisphosphate regeneration limitation. Plant Cell Physiol. 46 (2005) 1036–1045]. To explore the mechanism for forming of RuBP regeneration limitation, we conducted the gas exchange measurements and some biochemical analyses in FACE-treated and ambient rice plants. Net CO2 assimilation rate (Anet) in FACE leaves was remarkably lower than that in ambient leaves when measured at the same CO2 concentration, indicating that photosynthetic acclimation to elevated CO2 occurred. In the meantime the maximum electron transport rate (ETR) (Jmax), maximum carboxylation rate (Vcmax) in vivo, and RuBP contents decreased significantly in FACE leaves. The whole chain electron transport rate and photophosphorylation rate reduced significantly while ETR of photosystem II (PSII) did not significantly decrease and ETR of photosystem I (PSI) was significantly increased in the chloroplasts from FACE leaves. Further, the amount of cytochrome (Cyt) f protein, a key component localized between PSII and PSI, was remarkably declined in FACE leaves. It appears that during photosynthetic acclimation the decline in the Cyt f amount is an important cause for the decreased RuBP regeneration capacity by decreasing the whole chain electron transport in FACE leaves.  相似文献   

3.
The effects of chilling under low light (9/7 °C, 100 µmol m?2 s?1) on the photosynthetic and antioxidant capacities and subsequent recovery were examined in two (one tolerant and one sensitive) cucumber genotypes. Chilling resulted in an irreversible inhibition of net CO2 assimilation and growth for the sensitive genotype, which was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (Vcmax), the capacity for ribulose‐1,5‐bisphosphate regeneration (Jmax), Rubisco content and activity, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO2 supply or inorganic phosphate limitation. In contrast, CO2 assimilation for the tolerant genotype fully recovered after chill. The chill‐induced decrease in the proportion of electron flux for photosynthetic carbon reduction was mostly compensated by an O2‐dependent alternative electron flux driven by the water–water cycle, especially in the sensitive genotype. Compared with the tolerant genotype, the sensitive genotype after chill showed reduced capacity for scavenging reactive oxygen species and increased accumulation of reactive oxygen species. The balance between O2‐dependent alternative electron flux and the capacity for scavenging reactive oxygen species in response to chill plays a major role in determining the tolerance of cucumber leaves to this stress factor. It is concluded that the water–water cycle operates at high rates when CO2 assimilation is restricted in cucumber leaves subjected to chill and low light conditions.  相似文献   

4.
Wheat (Triticum aestivum L.) ears were removed to investigate long-term regulation of photosynthesis by sink demand at ambient CO2 and 22 °C. The CO2 level was also increased to 660 μmol mol?1 and temperature was lowered to 5 °C to examine short-term responses of photosynthesis to low sink demand. Sink removal inhibited photosynthesis and increased leaf levels of glucose, fructose and ribulose-1, 5-bisphosphate (RuBP), and the glucose-6-phosphate (G6P)/fructose-6-phosphate (F6P) and RuBP/3-phosphoglycerate (PGA) ratios under growth conditions, but had no effect on the activity and activation state of ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco) either under growth or short-term conditions, suggesting an inhibition of photosynthesis by decreased in vivo catalysis of Rubisco. Photosynthesis increased similarly in eared and earless shoots after a rise in CO2 concentration, and the ratio of triose-phosphates (glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, TP) to PGA was similar or higher for removed than intact ears, suggesting that feedback inhibition of photosynthesis was not caused by a limitation of ATP synthesis in chloroplasts. Under short-term conditions (660 μmol mol?1 CO2, 5 °C), TP and RuBP levels and the TP/PGA and TP/RuBP ratios were increased by sink removal, indicating an additional limitation of photosynthesis by the rate of RuBP regeneration.  相似文献   

5.
Spinach (Spinacia oleracea) plants were grown under the day/night temperature regime of 15/10 °C (LT) or 30/25 °C (HT). The plants were also transferred from HT to LT when the sample leaves were at particular developmental stages (HL-transfer). With fully mature leaves, the light-saturated photosynthetic rate (A) at the ambient CO2 concentration (Ca) of 1500 µL L−1 (A1500) and the initial slope of A versus intercellular CO2 concentration (Ci) at low Ci region (IS) were obtained to assess capacities of RuBP regeneration and carboxylation. Photosynthetic components including Rubisco and cytochrome f (Cyt f) were also determined. The optimum temperatures for A at Ca of 360 µL L−1 (A360), A1500 and IS in HT leaves were 27, 36 and 24 °C, whereas those in LT leaves were 18, 30 and 18 °C. The optimum temperatures in HL-transfer leaves approached those of LT leaves with the increase in the duration at LT. The shift in the optimum temperature was greater and quicker for IS than A1500. By the HL-transfer, the maximum values of A1500 and IS also increased. The maximum A1500 and Cyt f content increased more promptly than IS and Rubisco content. Changes in the Cyt f/Rubisco ratio were reflected to those in the A1500/IS ratio. Taken together, photosynthetic acclimation to low temperature in spinach leaves was due not only to the change in the balance of the absolute rates of RuBP regeneration and carboxylation but also to the large change in the optimum temperature of RuBP carboxylation.  相似文献   

6.
The carboxylase activities of crude carboxysome preparations obtained from the wild-type Synechococcus elongatus strain PCC 7942 strain and the mutant defective in the carboxysomal carbonic anhydrase (CA) were compared. The carboxylation reaction required high concentrations of bicarbonate and was not even saturated at 50 mM bicarbonate. With the initial concentrations of 50 mM and 25 mM for bicarbonate and ribulose-1,5-bisphosphate (RuBP), respectively, the initial rate of RuBP carboxylation by the mutant carboxysome (0.22 μmol mg?1 protein min?1) was only 30 % of that observed for the wild-type carboxysomes (0.71 μmol mg?1 protein min?1), indicating the importance of the presence of CA in efficient catalysis by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the mutant defective in the ccmLMNO genes, which lacks the carboxysome structure, could grow under aeration with 2 % (v/v) CO2 in air, the mutant defective in ccaA as well as ccmLMNO required 5 % (v/v) CO2 for growth, indicating that the cytoplasmically localized CcaA helped utilization of CO2 by the cytoplasmically localized Rubisco by counteracting the action of the CO2 hydration mechanism. The results predict that overexpression of Rubisco would hardly enhance CO2 fixation by the cyanobacterium at CO2 levels lower than 5 %, unless Rubisco is properly organized into carboxysomes.  相似文献   

7.
Net photosynthetic rate (P N) measured at the same CO2 concentration, the maximum in vivo carboxylation rate, and contents of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPCO) and RuBPCO activase were significantly decreased, but the maximum in vivo electron transport rate and RuBP content had no significant change in CO2-enriched [EC, about 200 μmol mol−1 above the ambient CO2 concentration (AC)] wheat leaves compared with those in AC grown wheat leaves. Hence photosynthetic acclimation in wheat leaves to EC is largely due to RuBP carboxylation limitation.  相似文献   

8.
Apex and Bristol cultivars of oilseed rape (Brassica napus) were irradiated with 0.63 W m?2 of UV-B over 5 d. Analyses of the response of net leaf carbon assimilation to intercellular CO2 concentration were used to examine the potential limitations imposed by stomata, carboxylation velocity and capacity for regeneration of ribulose 1,5-bis-phosphate on leaf photosynthesis. Simultaneous measurements of chlorophyll fluorescence were used to estimate the maximum quantum efficiency of photosystem II (PSII) photochemistry, the quantum efficiency of linear electron transport at steady-state photosynthesis, and the light and CO2-saturated rate of linear electron transport. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) content and activities were assayed in vitro. In both cultivars the UV-B treatment resulted in decreases in the light-saturated rate of CO2 assimilation, which were accompanied by decreases in carboxylation velocity and Rubisco content and activity. No major effects of UV-B were observed on end-product inhibition and stomatal limitation of photosynthesis or the rate of photorespiration relative to CO2 assimilation. In the Bristol cultivar, photoinhibition of PSII and loss of linear electron transport activity were observed when CO2 assimilation was severely inhibited. However, the Apex cultivar exhibited no major inhibition of PSII photochemistry or linear electron transport as the rate of CO2 assimilation decreased. It is concluded that loss of Rubisco is a primary factor in UV-B inhibition of CO2 assimilation.  相似文献   

9.
Effects of nitrogen (N) supply on the limiting step of CO(2) assimilation rate (A) at 380 μmol mol(-1) CO(2) concentration (A(380) ) at several leaf temperatures were studied in several crops, since N nutrition alters N allocation between photosynthetic components. Contents of leaf N, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) increased with increasing N supply, but the cyt f/Rubisco ratio decreased. Large leaf N content was linked to a high stomatal (g(s) ) and mesophyll conductance (g(m) ), but resulted in a lower intercellular (C(i) ) and chloroplast CO(2) concentration (C(c) ) because the increase in g(s) and g(m) was insufficient to compensate for change in A(380) . The A-C(c) response was used to estimate the maximum rate of RuBP carboxylation (V(cmax) ) and chloroplast electron transport (J(max) ). The J(max) /V(cmax) ratio decreased with reductions in leaf N content, which was consistent with the results of the cyt f/Rubisco ratio. Analysis using the C(3) photosynthesis model indicated that A(380) tended to be limited by RuBP carboxylation in plants grown at low N concentration, whereas it was limited by RuBP regeneration in plants grown at high N concentration. We conclude that the limiting step of A(380) depends on leaf N content and is mainly determined by N partitioning between Rubisco and electron transport components.  相似文献   

10.
The specificity factor of Rubisco (S f) was estimated in intact leaves from the carboxylation of ribulose-1,5-bisphosphate (RuBP) at various CO2/O2 ratios. As oxygenation is calculated by the difference of the 14CO2 uptake by RuBP in the absence and presence of oxygen, it is important to choose the optimum CO2/O2 ratios. At high CO2 concentration (1,000 cm3 m?3 and higher) oxygenation consumes less than 50% RuBP but the difference of concentrations of CO2 at cell walls (C w) and at the carboxylation centers (C c) is 2?C5% and the influence of mesophyll resistance (r md) is of minor importance. To accumulate large endogenous pool of RuBP, the leaves were preilluminated in the CO2- and O2-free gas environments for 8 to 10 s. Thereafter the light was switched off and the leaves were flushed with the gas containing different concentrations of 14CO2 and O2. The specificity factor of Rubisco was calculated from the amount of the tracer taken up under different 14CO2/O2 ratios by the exhaustion of the RuBP pool. Application of 14CO2 allowed us to discriminate between the CO2 uptake and the concurrent respiratory CO2 release which proceeded at the expense of unlabelled intermediates.  相似文献   

11.
To determine the effects of elevated CO2 concentration ([CO2]) on the temperature‐dependent photosynthetic properties, we measured gas exchange and chlorophyll fluorescence at various leaf temperatures (15, 20, 25, 30, 35 and 40°C) in 1‐year‐old seedlings of the Japanese white birch (Betula platyphylla var. japonica), grown in a phytotron under natural daylight at two [CO2] levels (ambient: 400 µmol mol?1 and elevated: 800 µmol mol?1) and limited N availability (90 mg N plant?1). Plants grown under elevated [CO2] exhibited photosynthetic downregulation, indicated by a decrease in the carboxylation capacity of Rubisco. At temperatures above 30°C, the net photosynthetic rates of elevated‐CO2‐grown plants exceeded those grown under ambient [CO2] when compared at their growth [CO2]. Electron transport rates were significantly lower in elevated‐CO2‐grown plants than ambient‐CO2‐grown ones at temperatures below 25°C. However, no significant difference was observed in the fraction of excess light energy [(1 ? qP)× Fv′/Fm′] between CO2 treatments across the temperature range. The quantum yield of regulated non‐photochemical energy loss was significantly higher in elevated‐CO2‐grown plants than ambient, when compared at their respective growth [CO2] below 25°C. These results suggest that elevated‐CO2‐induced downregulation might not exacerbate the temperature‐dependent susceptibility to photoinhibition, because reduced energy consumption by electron transport was compensated for by increased thermal energy dissipation at low temperatures.  相似文献   

12.
Using gas exchange, enzyme assays, and theoretical modeling of photosynthetic responses to light and CO2, we investigated whether decarbamylation of the active site of Rubisco at low CO2 and low light leads to a condition where the activation state of Rubisco directly limits the rate of net CO2 assimilation. Photosynthetic limitation by a reduction in the activation state of Rubisco would be indicated as a decline in the initial slope of the photosynthetic CO2 response relative to what is predicted using theoretical models. In bean (Phaseolus vulgaris) and oat (Avena sativa), we saw no discrepancy between predicted and observed initial slope values at 200 and 400 mbar O2, indicating no limitation by the carbamylation state of Rubisco. At 30 mbar O2 and light saturation, we also saw no discrepancy between predicted and observed initial slope values; however, at subsaturating light intensity, our observed initial slope values were less than the modeled initial slope values that corresponded to an RuBP regeneration limitation. Moreover, significant reduction of the Rubisco activation state occurred in both species at 30 mbar O2 and 30 μbar CO2. When the model was reprogrammed to account for observed levels of Rubisco deactivation, the predicted and measured initial slope values at low O2 and low PPFD were similar, indicating the reduction in carbamylation state accounted for the discrepancy. We interpret this as evidence for a direct limitation of the carbamylation state of Rubisco, probably because of a CO2 limitation for carbamate formation. This limitation was only observed at intercellular CO2 levels below what is encountered in vivo. At physiologically relevant CO2 levels in situ, the leaves maintained sufficient Rubisco activity to avoid cabamylation state limitations in the steady state. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Variation in light demand is a major factor in determining the growth and survival of trees in a forest. There is strong relation between the light‐demand and the effect of growth irradiance on leaf morphology and photosynthesis in three Acer species: A. rufinerve (light‐demanding), A. mono (intermediate) and A. palmatum (shade‐tolerant). The increase in mesophyll thickness and surface area of chloroplasts facing the intercellular airspaces (Sc) with growth irradiance was highest in A. rufinerve. Although the increase in light‐saturated photosynthesis (Amax) was similar among the species, the increase in water use efficiency (WUE) was much higher in A. rufinerve than that in the other species, indicating that the response to water limitation plays an important role in leaf photosynthetic acclimation to high light in A. rufinerve. The low CO2 partial pressure at the carboxylation site (Cc) in A. rufinerve (130 µmol mol?1) at high irradiance was caused by low stomatal and internal conductance to CO2 diffusion, which minimized the increase in Amax in A. rufinerve despite its high Rubisco content. Under shade conditions, interspecific differences in leaf features were relatively small. Thus, difference in light demand related to leaf acclimation to high light rather than that to low light in the Acer species.  相似文献   

14.
Restrictions to photosynthesis can limit plant growth at high temperature in a variety of ways. In addition to increasing photorespiration, moderately high temperatures (35–42 °C) can cause direct injury to the photosynthetic apparatus. Both carbon metabolism and thylakoid reactions have been suggested as the primary site of injury at these temperatures. In the present study this issue was addressed by first characterizing leaf temperature dynamics in Pima cotton (Gossypium barbadense) grown under irrigation in the US desert south‐west. It was found that cotton leaves repeatedly reached temperatures above 40 °C and could fluctuate as much as 8 or 10 °C in a matter of seconds. Laboratory studies revealed a maximum photosynthetic rate at 30–33 °C that declined by 22% at 45 °C. The majority of the inhibition persisted upon return to 30 °C. The mechanism of this limitation was assessed by measuring the response of photosynthesis to CO2 in the laboratory. The first time a cotton leaf (grown at 30 °C) was exposed to 45 °C, photosynthetic electron transport was stimulated (at high CO2) because of an increased flux through the photorespiratory pathway. However, upon cooling back to 30 °C, photosynthetic electron transport was inhibited and fell substantially below the level measured before the heat treatment. In the field, the response of assimilation (A) to various internal levels of CO2 (Ci) revealed that photosynthesis was limited by ribulose‐1,5‐bisphosphate (RuBP) regeneration at normal levels of CO2 (presumably because of limitations in thylakoid reactions needed to support RuBP regeneration). There was no evidence of a ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) limitation at air levels of CO2 and at no point on any of 30 ACi curves measured on leaves at temperatures from 28 to 39 °C was RuBP regeneration capacity measured to be in substantial excess of the capacity of Rubisco to use RuBP. It is therefore concluded that photosynthesis in field‐grown Pima cotton leaves is functionally limited by photosynthetic electron transport and RuBP regeneration capacity, not Rubisco activity.  相似文献   

15.
Diurnal changes in photosynthetic gas exchange and chlorophyll fluorescence were measured under full sunlight to reveal diffusional and non‐diffusional limitations to diurnal assimilation in leaves of Arisaema heterophyllum Blume plants grown either in a riparian forest understorey (shade leaves) or in an adjacent deforested open site (sun leaves). Midday depressions of assimilation rate (A) and leaf conductance of water vapour were remarkably deeper in shade leaves than in sun leaves. To evaluate the diffusional (i.e. stomatal and leaf internal) limitation to assimilation, we used an index [1–A/A350], in which A350 is A at a chloroplast CO2 concentration of 350 μ mol mol ? 1. A350 was estimated from the electron transport rate (JT), determined fluorometrically, and the specificity factor of Rubisco (S), determined by gas exchange techniques. In sun leaves under saturating light, the index obtained after the ‘peak’ of diurnal assimilation was 70% greater than that obtained before the ‘peak’, but in shade leaves, it was only 20% greater. The photochemical efficiency of photosystem II ( Δ F/Fm ′ ) and thus JT was considerably lower in shade leaves than in sun leaves, especially after the ‘peak’. In shade leaves but not in sun leaves, A at a photosynthetically active photon flux density (PPFD) > 500 μ mol m ? 2 s ? 1 depended positively on JT throughout the day. Electron flows used by the carboxylation and oxygenation (JO) of RuBP were estimated from A and JT. In sun leaves, the JO/JT ratio was significantly higher after the ‘peak’, but little difference was found in shade leaves. Photorespiratory CO2 efflux in the absence of atmospheric CO2 was about three times higher in sun leaves than in shade leaves. We attribute the midday depression of assimilation in sun leaves to the increased rate of photorespiration caused by stomatal closure, and that in shade leaves to severe photoinhibition. Thus, for sun leaves, increased capacities for photorespiration and non‐photochemical quenching are essential to avoid photoinhibitory damage and to tolerate high leaf temperatures and water stress under excess light. The increased Rubisco content in sun leaves, which has been recognized as raising photosynthetic assimilation capacity, also contributes to increase in the capacity for photorespiration.  相似文献   

16.
Usuda H 《Plant physiology》1987,84(2):549-554
The rate of CO2 assimilation and levels of metabolites of the C4 cycle and reductive pentose phosphate pathway in attached leaves of maize (Zea mays L.) were measured over a range of light intensity from 0 to 1,900 microEinsteins per square meter per second under a saturated CO2 concentration of 350 microliters per liter and a limiting CO2 concentration of 133 microliters per liter. The level of ribulose 1,5-bisphosphate (RuBP) stayed almost constant (around 60 nanomoles per milligram chlorophyll [Chl]) from low to high light intensities under 350 microliters per liter. Levels of 3-phosphoglycerate (PGA) increased from 100 to 650 nanomoles per milligram Chl under 350 microliters per liter CO2 with increasing light intensity. The calculated RuBP concentration of 6 millimolar (corresponded to 60 nanomoles per milligram Chl) was about two times above the estimated RuBP binding-site concentration on ribulose bisphosphate carboxylase-oxygenase (Rubisco) of ~2.6 millimolar in maize bundle sheath chloroplasts in the light. The ratio of RuBP/PGA increased with decreasing light intensity under 350 microliters per liter CO2. These results suggest that RuBP carboxylation is under control of light intensity possibly due to a limited supply of CO2 to Rubisco through the C4 cycle whose activity is highly dependent on light intensity. Pyruvate level increased with increasing light intensity as long as photosynthesis rate increased. A positive relationship between levels of PGA and those of pyruvate during steady-state photosynthesis under various conditions suggests that an elevated concentration of PGA increases the carbon input into the C4 cycle through the conversion of PGA to PEP and consequently the level of total intermediates of the C4 cycle can be raised to mediate higher photosynthesis rate.  相似文献   

17.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

18.
Carbon dioxide concentration (CO2) and light intensity are known to play important roles in plant growth and carbon assimilation. Nevertheless, the underlying physiological mechanisms have not yet been fully explored. Tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No. 1) were exposed to two levels of CO2 and three levels of light intensity and the effects on growth, leaf gas exchange and water use efficiency were investigated. Elevated CO2 and increased light intensity promoted growth, dry matter accumulation and pigment concentration and together the seedling health index. Elevated CO2 had no significant effect on leaf nitrogen content but did significantly upregulate Calvin cycle enzyme activity. Increased CO2 and light intensity promoted photosynthesis, both on a leaf-area basis and on a chlorophyll basis. Increased CO2 also increased light-saturated maximum photosynthetic rate, apparent quantum efficiency and carboxylation efficiency and, together with increased light intensity, it raised photosynthetic capacity. However, increased CO2 reduced transpiration and water consumption across different levels of light intensity, thus significantly increasing both leaf-level and plant-level water use efficiency. Among the range of treatments imposed, the combination of increased CO2 (800 µmol CO2 mol−1) and high light intensity (400 µmol m−2 s−1) resulted in optimal growth and carbon assimilation. We conclude that the combination of increased CO2 and increased light intensity worked synergistically to promote growth, photosynthetic capacity and water use efficiency by upregulation of pigment concentration, Calvin cycle enzyme activity, light energy use and CO2 fixation. Increased CO2 also lowered transpiration and hence water usage.  相似文献   

19.
Soybean (Glycine max) was grown in open-top field chambers at ambient (360 mol mol-1) or doubled [CO2] either in charcoal-filtered air (20 nmol mol-1 [O3]) or in non-filtered air supplemented to 1,5 x ambient [O3] (70 nmol mol-1) to determine the major limitations to assimilation under conditions of elevated [CO2] and/or [O3]. Through plant ontogeny, assimilation versus intercellular CO2 concentration (A/Ci) responses were measured to assess the limitations to assimilation imposed by the capacity for Rubisco carboxylation, RuBP regeneration, and stomatal diffusion.In the vegetative stages, no significant treatment effects of elevated [CO2] and/or [O3] were observed on Rubisco carboxylation efficiency (CE), light and CO2-saturated assimilation capacity (Amax), and chlorophyll content (Chl). However, for plants grown in elevated [CO2], the assimilation rate at growth [CO2] (A) was 60% higher than at ambient [CO2] up to the seed maturation stage, and the potential rate of assimilation by Rubisco capacity (Ap) was increased. Also in elevated [CO2]: A was 51% of Ap; the relative stomatal limitation (%Stomata) was 5%; and the relative RuBP regeneration limitation (%RuBP) was 44%. In ambient [CO2], O3 gradually decreased A per unit leaf area, but had little effect on Ap and the relative limitations to assimilation where A remained 51% of Ap, %Stomata was 27%, and %RuBP was 22%.During reproduction, CE declined for plants grown in elevated [CO2] and/or [O3]; Ap was unaffected by elevated [CO2], but was reduced by [O3] at ambient [CO2]; A increased to 72% of Ap in elevated [CO2] and/or [O3]-fumigated air; the %Stomata increased; and the %RuBP decreased, to become non significant in elevated [CO2] from the beginning of seed growth on, and in O3-fumigated air at ambient [CO2] at the seed maturation stage. The decrease in %RuBP occurred concomitantly with an increase in Amax and Chl. Significant [CO2] x [O3] interactions support the lack of an O3 effect on assimilation and its limitations at elevated [CO2] during seed maturation. These data suggest that elevated [CO2] alleviated some of the effects of O3 on photosynthesis.Keywords: CO2 by O3 interactions, elevated [CO2], O3 fumigation, Rubisco carboxylation efficiency, RuBP regeneration.   相似文献   

20.
CO2 fixation during photosynthesis is regulated by the activity of ribulose bisphosphate carboxylase (Rubisco). This conclusion became more apparent to me after CO2-fixation experiments using isolated spinach chloroplasts and protoplasts, purified Rubisco enzyme, and intact leaves. Ribulose bisphosphate (RuBP) pools and activation of Rubisco were measured and compared to 14CO2 fixation in light. The rates of 14CO 2 assimilation best followed the changes in Rubisco activation under moderate to high light intensities. RuBP pool sizes regulated 14 2 assimilation only in very high CO2 levels, low light and in darkness. Activation of Rubisco involves two separate processes: carbamylation of the protein and removal of inhibitors blocking carbamylation or blocking RuBP binding to carbamylated sites before reaction with CO2 or O2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号